Chapter 15: Problem 61
Write equations for the stepwise formation of each of the following complex ions. a. \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\) b. \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}^{3-}\)
Chapter 15: Problem 61
Write equations for the stepwise formation of each of the following complex ions. a. \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\) b. \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}^{3-}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the presence of \(\mathrm{NH}_{3}, \mathrm{Cu}^{2+}\) forms the complex ion \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+} .\) If the equilibrium concentrations of \(\mathrm{Cu}^{2+}\) and \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) are \(1.8 \times 10^{-17} M\) and \(1.0 \times 10^{-3} M,\) respectively, in a \(1.5-M \mathrm{NH}_{3}\) solution, calculate the value for the overall formation constant of \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\). $$\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K_{\mathrm{overall}}=?$$
The solubility of the ionic compound \(\mathrm{M}_{2} \mathrm{X}_{3},\) having a molar mass of \(288 \mathrm{g} / \mathrm{mol},\) is \(3.60 \times 10^{-7} \mathrm{g} / \mathrm{L} .\) Calculate the \(K_{\mathrm{sp}}\) of the compound.
A solution contains \(0.25\) \(M\) \(\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}\) and \(0.25 M \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\) Can the metal ions be separated by slowly adding \(\mathrm{Na}_{2} \mathrm{CO}_{3} ?\) Assume that for successful separation \(99 \%\) of the metal ion must be precipitated before the other metal ion begins to precipitate, and assume no volume change on addition of \(\mathrm{Na}_{2} \mathrm{CO}_{3}\).
The solubility of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\) in a \(0.10-M \mathrm{KIO}_{3}\) solution is \(2.6 \times 10^{-11} \mathrm{mol} / \mathrm{L} .\) Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\).
The \(\mathrm{Hg}^{2+}\) ion forms complex ions with \(\mathrm{I}^{-}\) as follows: $$\begin{aligned} \mathrm{Hg}^{2+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}^{+}(a q) & & K_{1}=1.0 \times 10^{8} \\ \mathrm{HgI}^{+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{2}(a q) & & K_{2}=1.0 \times 10^{5} \\ \mathrm{HgI}_{2}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{3}^{-}(a q) & & K_{3}=1.0 \times 10^{9} \\ \mathrm{HgI}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{4}^{2-}(a q) & & K_{4}=1.0 \times 10^{8} \end{aligned}$$ A solution is prepared by dissolving 0.088 mole of \(\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}\) and 5.00 moles of NaI in enough water to make 1.0 L of solution. a. Calculate the equilibrium concentration of \(\left[\mathrm{HgI}_{4}^{2-}\right] .\) b. Calculate the equilibrium concentration of \(\left[\mathrm{I}^{-}\right] .\) c. Calculate the equilibrium concentration of \(\left[\mathrm{Hg}^{2+}\right]\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.