Write equations for the stepwise formation of each of the following complex ions. a. \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\) b. \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}^{3-}\)

Short Answer

Expert verified
Formation of \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\): 1. \(\mathrm{Ni}^{2+} + \mathrm{CN}^- \rightarrow \mathrm{NiCN}^{+}\) 2. \(\mathrm{NiCN}^{+} + \mathrm{CN}^- \rightarrow \mathrm{Ni}(\mathrm{CN})_{2} \) 3. \(\mathrm{Ni}(\mathrm{CN})_{2} + \mathrm{CN}^- \rightarrow \mathrm{Ni}(\mathrm{CN})_{3}^{-}\) 4. \(\mathrm{Ni}(\mathrm{CN})_{3}^{-} + \mathrm{CN}^- \rightarrow \mathrm{Ni}(\mathrm{CN})_{4}^{2-}\) Formation of \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}^{3-}\): 1. \(\mathrm{V}^{3+} + \mathrm{C}_{2}\mathrm{O}_{4}^{2-} \rightarrow \mathrm{V}(\mathrm{C}_{2}\mathrm{O}_{4})^{+}\) 2. \(\mathrm{V}(\mathrm{C}_{2}\mathrm{O}_{4})^{+} + \mathrm{C}_{2}\mathrm{O}_{4}^{2-} \rightarrow \mathrm{V}\left(\mathrm{C}_{2}\mathrm{O}_{4}\right)_{2}^{-}\) 3. \(\mathrm{V}\left(\mathrm{C}_{2}\mathrm{O}_{4}\right)_{2}^{-} + \mathrm{C}_{2}\mathrm{O}_{4}^{2-} \rightarrow \mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}^{3-}\)

Step by step solution

01

Identify the central metal ion and the ligands

In both complex ions, we can identify the central metal ion and the ligands as follows: a. \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\): The central metal ion is \(\mathrm{Ni}^{2+}\) and the ligand is \(\mathrm{CN}^{-}\). b. \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}^{3-}\): The central metal ion is \(\mathrm{V}^{3+}\) and the ligand is \(\mathrm{C}_{2}\mathrm{O}_{4}^{2-}\). ##Step 2: Determine the number of ligands coordinating the central metal ion##
02

Determine the number of ligands coordinating the central metal ion

Count the number of ligands that coordinate the central metal ions in the given complex ions: a. In \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\), there are 4 ligands \(\mathrm{CN}^-\) coordinating the \(\mathrm{Ni}^{2+}\) ion. b. In \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}^{3-}\), there are 3 ligands \(\mathrm{C}_{2}\mathrm{O}_{4}^{2-}\) coordinating the \(\mathrm{V}^{3+}\) ion. ##Step 3: Write the equations for the stepwise formation of the complex ions##
03

Write the equations for the stepwise formation of the complex ions

Write the equations showing the step-by-step binding of the ligands to the central metal ions: a. Formation of \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\): 1. \(\mathrm{Ni}^{2+} + \mathrm{CN}^- \rightarrow \mathrm{NiCN}^{+}\) 2. \(\mathrm{NiCN}^{+} + \mathrm{CN}^- \rightarrow \mathrm{Ni}(\mathrm{CN})_{2} \) 3. \(\mathrm{Ni}(\mathrm{CN})_{2} + \mathrm{CN}^- \rightarrow \mathrm{Ni}(\mathrm{CN})_{3}^{-}\) 4. \(\mathrm{Ni}(\mathrm{CN})_{3}^{-} + \mathrm{CN}^- \rightarrow \mathrm{Ni}(\mathrm{CN})_{4}^{2-}\) b. Formation of \(\mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}^{3-}\): 1. \(\mathrm{V}^{3+} + \mathrm{C}_{2}\mathrm{O}_{4}^{2-} \rightarrow \mathrm{V}(\mathrm{C}_{2}\mathrm{O}_{4})^{+}\) 2. \(\mathrm{V}(\mathrm{C}_{2}\mathrm{O}_{4})^{+} + \mathrm{C}_{2}\mathrm{O}_{4}^{2-} \rightarrow \mathrm{V}\left(\mathrm{C}_{2}\mathrm{O}_{4}\right)_{2}^{-}\) 3. \(\mathrm{V}\left(\mathrm{C}_{2}\mathrm{O}_{4}\right)_{2}^{-} + \mathrm{C}_{2}\mathrm{O}_{4}^{2-} \rightarrow \mathrm{V}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}^{3-}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the presence of \(\mathrm{NH}_{3}, \mathrm{Cu}^{2+}\) forms the complex ion \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+} .\) If the equilibrium concentrations of \(\mathrm{Cu}^{2+}\) and \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) are \(1.8 \times 10^{-17} M\) and \(1.0 \times 10^{-3} M,\) respectively, in a \(1.5-M \mathrm{NH}_{3}\) solution, calculate the value for the overall formation constant of \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\). $$\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K_{\mathrm{overall}}=?$$

The solubility of the ionic compound \(\mathrm{M}_{2} \mathrm{X}_{3},\) having a molar mass of \(288 \mathrm{g} / \mathrm{mol},\) is \(3.60 \times 10^{-7} \mathrm{g} / \mathrm{L} .\) Calculate the \(K_{\mathrm{sp}}\) of the compound.

A solution contains \(0.25\) \(M\) \(\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}\) and \(0.25 M \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\) Can the metal ions be separated by slowly adding \(\mathrm{Na}_{2} \mathrm{CO}_{3} ?\) Assume that for successful separation \(99 \%\) of the metal ion must be precipitated before the other metal ion begins to precipitate, and assume no volume change on addition of \(\mathrm{Na}_{2} \mathrm{CO}_{3}\).

The solubility of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\) in a \(0.10-M \mathrm{KIO}_{3}\) solution is \(2.6 \times 10^{-11} \mathrm{mol} / \mathrm{L} .\) Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\).

The \(\mathrm{Hg}^{2+}\) ion forms complex ions with \(\mathrm{I}^{-}\) as follows: $$\begin{aligned} \mathrm{Hg}^{2+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}^{+}(a q) & & K_{1}=1.0 \times 10^{8} \\ \mathrm{HgI}^{+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{2}(a q) & & K_{2}=1.0 \times 10^{5} \\ \mathrm{HgI}_{2}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{3}^{-}(a q) & & K_{3}=1.0 \times 10^{9} \\ \mathrm{HgI}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{4}^{2-}(a q) & & K_{4}=1.0 \times 10^{8} \end{aligned}$$ A solution is prepared by dissolving 0.088 mole of \(\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}\) and 5.00 moles of NaI in enough water to make 1.0 L of solution. a. Calculate the equilibrium concentration of \(\left[\mathrm{HgI}_{4}^{2-}\right] .\) b. Calculate the equilibrium concentration of \(\left[\mathrm{I}^{-}\right] .\) c. Calculate the equilibrium concentration of \(\left[\mathrm{Hg}^{2+}\right]\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free