In the presence of \(\mathrm{NH}_{3}, \mathrm{Cu}^{2+}\) forms the complex ion \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+} .\) If the equilibrium concentrations of \(\mathrm{Cu}^{2+}\) and \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) are \(1.8 \times 10^{-17} M\) and \(1.0 \times 10^{-3} M,\) respectively, in a \(1.5-M \mathrm{NH}_{3}\) solution, calculate the value for the overall formation constant of \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\). $$\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K_{\mathrm{overall}}=?$$

Short Answer

Expert verified
The overall formation constant of \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) is approximately \(1.097 \times 10^{14}\).

Step by step solution

01

List the given equilibrium concentrations

We are given that $$[\mathrm{Cu}^{2+}] = 1.8 \times 10^{-17} M$$ $$[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}] = 1.0 \times 10^{-3} M$$ And the concentration of the solution $$[\mathrm{NH}_{3}] = 1.5 M$$
02

Insert equilibrium concentrations into the K expression

Now that we have the equilibrium concentrations, we can plug them into our K expression: $$K_{\mathrm{overall}}=\frac{[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}]}{[\mathrm{Cu}^{2+}][\mathrm{NH}_{3}]^4}=\frac{1.0 \times 10^{-3}}{(1.8 \times 10^{-17})[(1.5)^4]}$$
03

Calculate K

Now, we can calculate the K value for the complex ion: $$K_{\mathrm{overall}}=\frac{1.0 \times 10^{-3}}{(1.8 \times 10^{-17})[(1.5)^4]}=\frac{1.0 \times 10^{-3}}{(1.8 \times 10^{-17})(5.0625)}$$ $$K_{\mathrm{overall}}=\frac{1.0 \times 10^{-3}}{9.1125 \times 10^{-17}}\approx 1.097 \times 10^{14}$$ Thus, the overall formation constant of \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) is approximately \(1.097 \times 10^{14}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A solution contains \(1.0 \times 10^{-5} M \mathrm{Ag}^{+}\) and \(2.0 \times 10^{-6} M \mathrm{CN}^{-}\) Will AgCN( \(s\) ) precipitate? \(\left(K_{\mathrm{sp}} \text { for } \mathrm{AgCN}(s) \text { is } 2.2 \times 10^{-12} .\right)\)

Assuming that the solubility of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)\) is \(1.6 \times 10^{-7}\) \(\operatorname{mol} / \mathrm{L}\) at \(25^{\circ} \mathrm{C},\) calculate the \(K_{\mathrm{sp}}\) for this salt. Ignore any potential reactions of the ions with water.

Sodium tripolyphosphate \(\left(\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}\right)\) is used in many synthetic detergents. Its major effect is to soften the water by complexing \(\mathrm{Mg}^{2+}\) and \(\mathrm{Ca}^{2+}\) ions. It also increases the efficiency of surfactants, or wetting agents that lower a liquid's surface tension. The \(K\) value for the formation of \(\mathrm{MgP}_{3} \mathrm{O}_{10}^{3-}\) is \(4.0 \times 10^{8} .\) The reaction is \(\mathrm{Mg}^{2+}(a q)+\mathrm{P}_{3} \mathrm{O}_{10}^{5-}(a q) \rightleftharpoons \mathrm{MgP}_{3} \mathrm{O}_{10}^{3-}(a q)\) Calculate the concentration of \(\mathrm{Mg}^{2+}\) in a solution that was originally \(50 .\) ppm \(\mathrm{Mg}^{2+}(50 . \mathrm{mg} / \mathrm{L} \text { of solution) after } 40 . \mathrm{g}\) \(\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}\) is added to \(1.0 \mathrm{L}\) of the solution.

Calculate the solubility of solid \(\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(K_{\mathrm{sp}}=1 \times 10^{-54}\right)\) in a \(0.10-M \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) solution.

Write equations for the stepwise formation of each of the following complex ions. a. \(\mathrm{CoF}_{6}^{3-}\) b. \(\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free