Order the following solids (a-d) from least soluble to most soluble. Ignore any potential reactions of the ions with water. a. \(\mathrm{AgCl} \quad K_{\mathrm{sp}}=1.6 \times 10^{-10}\) b. \(\mathrm{Ag}_{2} \mathrm{S} \quad K_{\mathrm{sp}}=1.6 \times 10^{-49}\) c. \(\mathrm{CaF}_{2} \quad K_{\mathrm{sp}}=4.0 \times 10^{-11}\) d. CuS \(\quad K_{\mathrm{sp}}=8.5 \times 10^{-45}\)

Short Answer

Expert verified
Least soluble to most soluble: \( \mathrm{Ag}_{2} \mathrm{S} \rightarrow \mathrm{CuS} \rightarrow \mathrm{AgCl} \rightarrow \mathrm{CaF}_{2} \)

Step by step solution

01

List the solids with their corresponding \(K_{sp}\) values

: a. \(\mathrm{AgCl}, \quad K_{\mathrm{sp}}=1.6 \times 10^{-10}\) b. \(\mathrm{Ag}_{2} \mathrm{S}, \quad K_{\mathrm{sp}}=1.6 \times 10^{-49}\) c. \(\mathrm{CaF}_{2}, \quad K_{\mathrm{sp}}=4.0 \times 10^{-11}\) d. \(\mathrm{CuS}, \quad K_{\mathrm{sp}}=8.5 \times 10^{-45}\) 2.
02

Arrange the solids from lowest \(K_{sp}\) value to highest \(K_{sp}\) value

: b. \(\mathrm{Ag}_{2} \mathrm{S}, \quad K_{\mathrm{sp}}=1.6 \times 10^{-49}\) (least soluble) d. \(\mathrm{CuS}, \quad K_{\mathrm{sp}}=8.5 \times 10^{-45}\) a. \(\mathrm{AgCl}, \quad K_{\mathrm{sp}}=1.6 \times 10^{-10}\) c. \(\mathrm{CaF}_{2}, \quad K_{\mathrm{sp}}=4.0 \times 10^{-11}\) (most soluble) 3.
03

Order the solids from least soluble to most soluble

: From the ordered list of \(K_{sp}\) values, we can now order the given solids from least soluble to most soluble: - Least soluble: \(\mathrm{Ag}_{2} \mathrm{S}\) - Second least soluble: \(\mathrm{CuS}\) - Second most soluble: \(\mathrm{AgCl}\) - Most soluble: \(\mathrm{CaF}_{2}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write balanced equations for the dissolution reactions and the corresponding solubility product expressions for each of the following solids. a. \(\mathrm{Ag}_{2} \mathrm{CO}_{3}\) b. \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}\) c. \(\mathrm{BaF}_{2}\)

The solubility of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\) in a \(0.10-M \mathrm{KIO}_{3}\) solution is \(2.6 \times 10^{-11} \mathrm{mol} / \mathrm{L} .\) Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(s)\).

A solution is \(1 \times 10^{-4} M\) in \(\mathrm{NaF}, \mathrm{Na}_{2} \mathrm{S},\) and \(\mathrm{Na}_{3} \mathrm{PO}_{4} .\) What would be the order of precipitation as a source of \(\mathrm{Pb}^{2+}\) is added gradually to the solution? The relevant \(K_{\mathrm{sp}}\) values are \(K_{\mathrm{sp}}\left(\mathrm{PbF}_{2}\right)\) \(=4 \times 10^{-8}, K_{\mathrm{sp}}(\mathrm{PbS})=7 \times 10^{-29},\) and \(K_{\mathrm{sp}}\left[\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right]=\) \(1 \times 10^{-54}\).

For which salt in each of the following groups will the solubility depend on pH? a. \(\mathrm{AgF}, \mathrm{AgCl}, \mathrm{AgBr}\) b. \(\mathrm{Pb}(\mathrm{OH})_{2}, \mathrm{PbCl}_{2}\) c. \(\operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}, \operatorname{Sr}\left(\mathrm{NO}_{2}\right)_{2}\) d. \(\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Ni}(\mathrm{CN})_{2}\)

What mass of \(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\) must be added to \(1.0 \mathrm{L}\) of a \(1.0-M \mathrm{HF}\) solution to begin precipitation of \(\mathrm{CaF}_{2}(s) ?\) For \(\mathrm{CaF}_{2}, K_{\mathrm{sp}}=\) \(4.0 \times 10^{-11}\) and \(K_{\mathrm{a}}\) for \(\mathrm{HF}=7.2 \times 10^{-4} .\) Assume no volume change on addition of \(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(s)\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free