The \(\mathrm{Hg}^{2+}\) ion forms complex ions with \(\mathrm{I}^{-}\) as follows: $$\begin{aligned} \mathrm{Hg}^{2+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}^{+}(a q) & & K_{1}=1.0 \times 10^{8} \\ \mathrm{HgI}^{+}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{2}(a q) & & K_{2}=1.0 \times 10^{5} \\ \mathrm{HgI}_{2}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{3}^{-}(a q) & & K_{3}=1.0 \times 10^{9} \\ \mathrm{HgI}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) & \rightleftharpoons \mathrm{HgI}_{4}^{2-}(a q) & & K_{4}=1.0 \times 10^{8} \end{aligned}$$ A solution is prepared by dissolving 0.088 mole of \(\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}\) and 5.00 moles of NaI in enough water to make 1.0 L of solution. a. Calculate the equilibrium concentration of \(\left[\mathrm{HgI}_{4}^{2-}\right] .\) b. Calculate the equilibrium concentration of \(\left[\mathrm{I}^{-}\right] .\) c. Calculate the equilibrium concentration of \(\left[\mathrm{Hg}^{2+}\right]\).

Short Answer

Expert verified
In conclusion, the equilibrium concentrations are: a. \([\mathrm{HgI}_{4}^{2-}]\) ≈ 4.4 x 10⁻⁹ M b. \([\mathrm{I}^{-}]\) ≈ 5.00 M c. \([\mathrm{Hg}^{2+}]\) ≈ 0.088 M

Step by step solution

01

Write the equilibrium expressions for each reaction

The following expressions represent the equilibrium for each reaction: 1. \(K_1 = [\mathrm{HgI}^{+}]/\left([\mathrm{Hg}^{2+}][\mathrm{I}^{-}]\right)\) 2. \(K_2 = [\mathrm{HgI}_{2}]/\left([\mathrm{HgI}^{+}][\mathrm{I}^{-}]\right)\) 3. \(K_3 = [\mathrm{HgI}_{3}^{-}]/\left([\mathrm{HgI}_{2}][\mathrm{I}^{-}]\right)\) 4. \(K_4 = [\mathrm{HgI}_{4}^{2-}]/\left([\mathrm{HgI}_{3}^{-}][\mathrm{I}^{-}]\right)\)
02

Write the initial concentrations

Given the initial moles of Hg(NO₃)₂, NaI, and the volume, we can find the initial concentrations of Hg²⁺ and I⁻ ions: 1. \([\mathrm{Hg}^{2+ }]_0 = \frac{0.088\,\text{mol}}{1.0\,\text{L}} = 0.088\,\text{M}\) 2. \([\mathrm{I}^-]_0 = \frac{5.00\,\text{mol}}{1.0\,\text{L}} = 5.00\,\text{M}\)
03

Use the initial concentrations in the equilibrium expressions

We can rewrite the equilibrium expressions in terms of initial concentrations ([I⁻] and [Hg²⁺]) and the amount of change (x) caused by the equilibrium: 1. \(K_1 = \frac{x}{(0.088-x)(5.00-x)}\) 2. \(K_2 = \frac{x}{x(5.00-x)}\) 3. \(K_3 = \frac{x}{x(5.00-x)}\) 4. \(K_4 = \frac{x}{x(5.00-x)}\)
04

Solve for x

Now we need to solve for x (equilibrium concentration of HgI₄²⁻): 1. From equation 4: \(x = K_4([\mathrm{HgI}_{3}^{-}][\mathrm{I}^{-}])\) 2. Using equation 3, substitute for [HgI₃⁻]: \(x = K_4K_3([\mathrm{HgI}_{2}][\mathrm{I}^{-}])\) 3. Using equation 2, substitute for [HgI₂]: \(x = K_4K_3K_2([\mathrm{HgI}^{+}][\mathrm{I}^{-}])\) 4. Using equation 1, substitute for [HgI⁺]: \(x = K_4K_3K_2K_1([\mathrm{Hg}^{2+}][\mathrm{I}^{-}]) = K_4K_3K_2K_1(0.088-x)(5.00-x)\) 5. Now, multiplying the equilibrium constants and simplifying the equation, \(x = 1.0 \times 10^{30}(0.088-x)(5.00-x)\) Since the equilibrium constants are quite large, we can approximate that x << 0.088 and x << 5.00. Now, we have: \(x = 1.0 \times 10^{30}(0.088)(5.00)\) Solving for x, we get: \(x = 4.4 \times 10^{-9}\,\text{M}\) So, the equilibrium concentration of [HgI₄²⁻] is 4.4 x 10⁻⁹ M.
05

Calculate the equilibrium concentration of I⁻

Use the result from Step 4 to find the equilibrium concentration of I⁻ in the solution: \([\mathrm{I}^{-}] = [\mathrm{I}^{-}]_0 - x = 5.00\,\text{M} - 4.4 \times 10^{-9}\,\text{M} \approx 5.00\,\text{M}\) So, the equilibrium concentration of [I⁻] is approximately 5.00 M.
06

Calculate the equilibrium concentration of Hg²⁺

Use the result from Step 4 to find the equilibrium concentration of Hg²⁺ in the solution: \([\mathrm{Hg}^{2+}] = [\mathrm{Hg}^{2+}]_0 - x = 0.088\,\text{M} - 4.4 \times 10^{-9}\,\text{M} \approx 0.088\,\text{M}\) So, the equilibrium concentration of [Hg²⁺] is approximately 0.088 M. In conclusion, the equilibrium concentrations are: a. [HgI₄²⁻] ≈ 4.4 x 10⁻⁹ M b. [I⁻] ≈ 5.00 M c. [Hg²⁺] ≈ 0.088 M

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The concentration of \(\mathrm{Ag}^{+}\) in a solution saturated with \(\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(s)\) is \(2.2 \times 10^{-4} \mathrm{M} .\) Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\).

A solution is prepared by adding 0.10 mole of \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{2}\) to \(0.50 \mathrm{L}\) of \(3.0 M \mathrm{NH}_{3} .\) Calculate \(\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]\) and \(\left[\mathrm{Ni}^{2+}\right]\) in this solution. \(K_{\text {overall }}\) for \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\) is \(5.5 \times 10^{8} .\) That is, $$5.5 \times 10^{8}=\frac{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]}{\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{6}}$$ for the overall reaction $$ \mathrm{Ni}^{2+}(a q)+6 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}(a q) $$

The overall formation constant for \(\mathrm{HgI}_{4}^{2-}\) is \(1.0 \times 10^{30}\) That is, $$ 1.0 \times 10^{30}=\frac{\left[\mathrm{HgI}_{4}^{2-}\right]}{\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{I}^{-}\right]^{4}} $$ What is the concentration of \(\mathrm{Hg}^{2+}\) in \(500.0 \mathrm{mL}\) of a solution that was originally \(0.010\) \(M\) \(\mathrm{Hg}^{2+}\) and \(0.78\) \(M\) \(\mathrm{I}^{-} ?\) The reaction is $$\mathrm{Hg}^{2+}(a q)+4 \mathrm{I}^{-}(a q) \rightleftharpoons \mathrm{HgI}_{4}^{2-}(a q)$$

a. Using the \(K_{\mathrm{sp}}\) value for \(\mathrm{Cu}(\mathrm{OH})_{2}\left(1.6 \times 10^{-19}\right)\) and the overall formation constant for \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\left(1.0 \times 10^{13}\right)\) calculate the value for the equilibrium constant for the following reaction: $$\mathrm{Cu}(\mathrm{OH})_{2}(s)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)$$ b. Use the value of the equilibrium constant you calculated in part a to calculate the solubility (in mol/L) of \(\mathrm{Cu}(\mathrm{OH})_{2}\) in \(5.0 M \mathrm{NH}_{3} .\) In \(5.0 \mathrm{M} \mathrm{NH}_{3}\) the concentration of \(\mathrm{OH}^{-}\) is \(0.0095 M\).

The solubility of copper(II) hydroxide in water can be increased by adding either the base \(\mathrm{NH}_{3}\) or the acid HNO \(_{3}\). Explain. Would added \(\mathrm{NH}_{3}\) or \(\mathrm{HNO}_{3}\) have the same effect on the solubility of silver acetate or silver chloride? Explain.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free