Ethanethiol \((\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH} ;\) also called ethyl mercaptan) is commonly added to natural gas to provide the "rotten egg" smell of a gas leak. The boiling point of ethanethiol is \(35^{\circ} \mathrm{C}\) and its heat of vaporization is \(27.5 \mathrm{kJ} / \mathrm{mol} .\) What is the entropy of vaporization for this substance?

Short Answer

Expert verified
The entropy of vaporization for ethanethiol can be calculated using the formula ΔS_vap = ΔH_vap / bP. First, convert the boiling point to Kelvin: bP (K) = 35°C + 273.15 = 308.15K. Then, convert the heat of vaporization to J/mol: ΔH_vap (J/mol) = 27.5 kJ/mol * (1000 J/1 kJ) = 27500 J/mol. Finally, calculate the entropy of vaporization: ΔS_vap = 27500 J/mol / 308.15K ≈ 89.25 J/mol K.

Step by step solution

01

Convert the boiling point from Celsius to Kelvin

Formula to convert Celsius to Kelvin: Temperature in Kelvin (K) = Temperature in Celsius (°C) + 273.15 Given boiling point, bP = 35°C Now, convert the boiling point to Kelvin. bP (K) = 35°C + 273.15 = 308.15K
02

Calculate entropy of vaporization

The entropy of vaporization can be calculated using the following formula: Entropy of vaporization (ΔS_vap) = Heat of vaporization (ΔH_vap) / Boiling point (bP) Given the heat of vaporization, ΔH_vap = 27.5 kJ/mol. Now, we need to convert the ΔH_vap from kJ/mol to J/mol: ΔH_vap (J/mol) = 27.5 kJ/mol * (1000 J/1 kJ) = 27500 J/mol Now, calculate the entropy of vaporization, ΔS_vap: ΔS_vap = ΔH_vap (J/mol) / bP (K) = 27500 J/mol / 308.15K ΔS_vap ≈ 89.25 J/mol K (rounded to two decimal places) The entropy of vaporization for ethanethiol is approximately 89.25 J/mol K.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Given the following data: $$2 \mathrm{H}_{2}(g)+\mathrm{C}(s) \longrightarrow \mathrm{CH}_{4}(g) \quad \Delta G^{\circ}=-51 \mathrm{kJ}$$ $$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta G^{\circ}=-474 \mathrm{kJ}$$ $$\mathrm{C}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) \quad \Delta G^{\circ}=-394 \mathrm{kJ}$$ Calculate \(\Delta G^{\circ}\) for \(\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)\)

The third law of thermodynamics states that the entropy of a perfect crystal at \(0 \mathrm{K}\) is zero. In Appendix \(4, \mathrm{F}^{-}(a q), \mathrm{OH}^{-}(a q)\) and \(\mathrm{S}^{2-}(a q)\) all have negative standard entropy values. How can \(S^{\circ}\) values be less than zero?

Consider the reaction $$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(g)$$ a. Use \(\Delta G_{\mathrm{f}}^{\circ}\) values in Appendix 4 to calculate \(\Delta G^{\circ}\) for this reaction. b. Is this reaction spontaneous under standard conditions at \(298 \mathrm{K} ?\) c. The value of \(\Delta H^{\circ}\) for this reaction is \(100 .\) kJ. At what temperatures is this reaction spontaneous at standard conditions? Assume that \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) do not depend on temperature.

The following reaction occurs in pure water: $$\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)$$ which is often abbreviated as $$\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q)$$ For this reaction, \(\Delta G^{\circ}=79.9 \mathrm{kJ} / \mathrm{mol}\) at \(25^{\circ} \mathrm{C} .\) Calculate the value of \(\Delta G\) for this reaction at \(25^{\circ} \mathrm{C}\) when \(\left[\mathrm{OH}^{-}\right]=0.15 M\) and \(\left[\mathrm{H}^{+}\right]=0.71 M\)

Consider the reactions $$\begin{array}{c} \mathrm{Ni}^{2+}(a q)+6 \mathrm{NH}_{3}(a q) \longrightarrow \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}(a q) \\ \mathrm{Ni}^{2+}(a q)+3 \mathrm{en}(a q) \longrightarrow \mathrm{Ni}(\mathrm{en})_{3}^{2+}(a q) \end{array}$$ where $$\mathrm{en}=\mathrm{H}_{2} \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$$ The \(\Delta H\) values for the two reactions are quite similar, yet \(\mathrm{K}_{\text {reaction } 2}>K_{\text {reaction }} .\) Explain.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free