Predict the sign of \(\Delta S^{\circ}\) and then calculate \(\Delta S^{\circ}\) for each of the following reactions. a. \(\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)\) b. \(2 \mathrm{CH}_{3} \mathrm{OH}(g)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)\) c. \(\mathrm{HCl}(g) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)\)

Short Answer

Expert verified
The sign of \(\Delta S^{\circ}\) and the calculated values for the given reactions are: a) Negative; -164.2 \(\frac{J}{mol K}\) b) Positive; 243.6 \(\frac{J}{mol K}\) c) Negative; -130.4 \(\frac{J}{mol K}\)

Step by step solution

01

Predict the sign of \(\Delta S^{\circ}\)

From gas to a liquid phase, the disorder of a system decreases. In this reaction, two gas molecules are combining to form one liquid molecule. Considering fewer molecules and lower randomness, we can predict a negative \(\Delta S^{\circ}\).
02

Calculate \(\Delta S^{\circ}\)

To calculate the change in entropy, we will use the formula: \[\Delta S^{\circ} =\Delta S^{\circ}_{\text{products}} - \Delta S^{\circ}_{\text{reactants}}\] Let's find the entropy changes in the reactants and products: - For H₂(g): \(S^{\circ}_{\text{H₂(g)}} = 130.6 \frac{J}{mol K}\) - For O₂(g): \(S^{\circ}_{\text{O₂(g)}} = 205.1 \frac{J}{mol K}\) - For H₂O(l): \(S^{\circ}_{\text{H₂O(l)}} = 69.9 \frac{J}{mol K}\) Now, we can substitute these values in the formula and calculate the change in entropy: \[\Delta S^{\circ}= 69.9 - (130.6 + (0.5 \times 205.1))\] \[\Delta S^{\circ}= -164.2 \frac{J}{mol K}\] #b. \(2 \mathrm{CH}_{3} \mathrm{OH}(g)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)\) #
03

Predict the sign of \(\Delta S^{\circ}\)

We have five moles of gas in the reactants and six moles of gas in the products. This means an increase in the number of molecules involved in the reaction which results in higher disorder. We can predict a positive \(\Delta S^{\circ}\).
04

Calculate \(\Delta S^{\circ}\)

Let's find the entropy changes in the reactants and products: - For CH₃OH(g): \(S^{\circ}_{\text{CH₃OH(g)}} = 239.7 \frac{J}{mol K}\) - For O₂(g): \(S^{\circ}_{\text{O₂(g)}} = 205.1 \frac{J}{mol K}\) - For CO₂(g): \(S^{\circ}_{\text{CO₂(g)}} = 213.8 \frac{J}{mol K}\) - For H₂O(g): \(S^{\circ}_{\text{H₂O(g)}} = 188.8 \frac{J}{mol K}\) Now we can substitute these values in the formula and calculate the change in entropy: \[\Delta S^{\circ}= (2 \times 213.8 + 4 \times 188.8) - (2 \times 239.7 + 3 \times 205.1)\] \[\Delta S^{\circ}= 243.6 \frac{J}{mol K}\] #c. \(\mathrm{HCl}(g) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)\) #
05

Predict the sign of \(\Delta S^{\circ}\)

Gaseous HCl dissociates into aq H⁺ and Cl⁻ ions, resulting in a higher disorder due to the involvement of a significant amount of solvent molecules to solvate these ions. Consequently, we can predict a positive \(\Delta S^{\circ}\).
06

Calculate \(\Delta S^{\circ}\)

Let's find the entropy changes in the reactants and products: - For HCl(g): \(S^{\circ}_{\text{HCl(g)}} = 186.9 \frac{J}{mol K}\) - For H⁺(aq): \(S^{\circ}_{\text{H⁺(aq)}} = 0 \frac{J}{mol K}\) (by convention) - For Cl⁻(aq): \(S^{\circ}_{\text{Cl⁻(aq)}} = 56.5 \frac{J}{mol K}\) Now we can substitute these values in the formula and calculate the change in entropy: \[\Delta S^{\circ} = (0 + 56.5) - (186.9)\] \[\Delta S^{\circ} = -130.4 \frac{J}{mol K}\] To summarize the results: - For reaction (a), the sign of \(\Delta S^{\circ}\) is negative, and the calculated value is -164.2 \(\frac{J}{mol K}\). - For reaction (b), the sign of \(\Delta S^{\circ}\) is positive, and the calculated value is 243.6 \(\frac{J}{mol K}\). - For reaction (c), the sign of \(\Delta S^{\circ}\) is negative, and the calculated value is -130.4 \(\frac{J}{mol K}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the reaction $$2 \mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(g)$$ $$2 \mathrm{H}_{2} \mathrm{S}(g)+\mathrm{SO}_{2}(g) \rightleftharpoons 3 \mathrm{S}_{\text {thombic }}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)$$For each of the following mixtures of reactants and products at \(25^{\circ} \mathrm{C},\) predict the direction in which the reaction will shift to reach equilibrium. a. \(P_{\mathrm{NO}_{2}}=P_{\mathrm{N}_{2} \mathrm{O}_{4}}=1.0 \mathrm{atm}\) b. \(P_{\mathrm{NO}_{2}}=0.21 \mathrm{atm}, P_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.50 \mathrm{atm}\) c. \(P_{\mathrm{NO}_{2}}=0.29 \mathrm{atm}, P_{\mathrm{N}_{2} \mathrm{O}_{4}}=1.6 \mathrm{atm}\)

Choose the substance with the larger positional probability in each case. a. 1 mole of \(\mathrm{H}_{2}\) (at \(\mathrm{STP}\) ) or 1 mole of \(\mathrm{H}_{2}\) (at \(100^{\circ} \mathrm{C}, 0.5\) atm) b. 1 mole of \(\mathrm{N}_{2}\) (at \(\mathrm{STP}\) ) or 1 mole of \(\mathrm{N}_{2}\) (at \(100 \mathrm{K}, 2.0\) atm) c. 1 mole of \(\mathrm{H}_{2} \mathrm{O}(s)\) (at \(0^{\circ} \mathrm{C}\) ) or 1 mole of \(\mathrm{H}_{2} \mathrm{O}(l)\) (at \(20^{\circ} \mathrm{C}\) )

At what temperatures will the following processes be spontaneous? a. \(\Delta H=-18 \mathrm{kJ}\) and \(\Delta S=-60 . \mathrm{J} / \mathrm{K}\) b. \(\Delta H=+18 \mathrm{kJ}\) and \(\Delta S=+60 . \mathrm{J} / \mathrm{K}\) c. \(\Delta H=+18 \mathrm{kJ}\) and \(\Delta S=-60 . \mathrm{J} / \mathrm{K}\) d. \(\Delta H=-18 \mathrm{kJ}\) and \(\Delta S=+60 . \mathrm{J} / \mathrm{K}\)

Cells use the hydrolysis of adenosine triphosphate, abbreviated as ATP, as a source of energy. Symbolically, this reaction can be written as $$\mathrm{ATP}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{ADP}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)$$ where ADP represents adenosine diphosphate. For this reaction, \(\Delta G^{\circ}=-30.5 \mathrm{kJ} / \mathrm{mol}.\) a. Calculate \(K\) at \(25^{\circ} \mathrm{C}\) b. If all the free energy from the metabolism of glucose $$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)$$ goes into forming ATP from ADP, how many ATP molecules can be produced for every molecule of glucose? $$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)$$ goes into forming ATP from ADP, how many ATP molecules can be produced for every molecule of glucose?

Given the following data: $$2 \mathrm{C}_{6} \mathrm{H}_{6}(l)+15 \mathrm{O}_{2}(g) \longrightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)$$ $$\Delta G^{\circ}=-6399 \mathrm{kJ}$$ $$\mathrm{C}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) \quad \Delta G^{\circ}=-394 \mathrm{kJ}$$ $$\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta G^{\circ}=-237 \mathrm{kJ}$$ calculate \(\Delta G^{\circ}\) for the reaction $$6 \mathrm{C}(s)+3 \mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6}(l)$$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free