Given the following data: $$2 \mathrm{H}_{2}(g)+\mathrm{C}(s) \longrightarrow \mathrm{CH}_{4}(g) \quad \Delta G^{\circ}=-51 \mathrm{kJ}$$ $$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta G^{\circ}=-474 \mathrm{kJ}$$ $$\mathrm{C}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) \quad \Delta G^{\circ}=-394 \mathrm{kJ}$$ Calculate \(\Delta G^{\circ}\) for \(\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)\)

Short Answer

Expert verified
The standard Gibbs free energy change for the target reaction, \(\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)\), is \(\Delta G^{\circ}=-1291 \mathrm{kJ}\).

Step by step solution

01

Write down the target reaction

Write down the target reaction: $$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$$
02

Reverse Reaction 1

Reverse Reaction 1 to get \(\mathrm{CH}_{4}(g)\) on the reactant side: $$\mathrm{CH}_{4}(g) \longrightarrow 2 \mathrm{H}_{2}(g)+\mathrm{C}(s) \quad \Delta G_{1}^{\circ}=51 \mathrm{kJ}$$
03

Double Reaction 2

Double Reaction 2 to get \(2 \mathrm{O}_{2}(g)\) and \(2 \mathrm{H}_{2}\mathrm{O}(l)\) on the product side: $$4 \mathrm{H}_{2}(g)+2\mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{H}_{2}\mathrm{O}(l) \quad \Delta G_{2}^{\circ}=-2 \times 474 \mathrm{kJ}=-948 \mathrm{kJ}$$
04

Add the manipulated reactions

Add the manipulated Reaction 1 and the double of Reaction 2, with Reaction 3. This will give the target reaction: $$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$$ Now, sum the corresponding Gibbs free energy changes: $$\Delta G_{total}^{\circ} = \Delta G_{1}^{\circ} + \Delta G_{2}^{\circ} + \Delta G^{\circ}_3 = 51 \mathrm{kJ} + (-948 \mathrm{kJ}) + (-394 \mathrm{kJ}) = -1291 \mathrm{kJ}$$
05

Report the result

The standard Gibbs free energy change for the target reaction is: $$\Delta G^{\circ}(\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l))=-1291 \mathrm{kJ}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What information can be determined from \(\Delta G\) for a reaction? Does one get the same information from \(\Delta G^{\circ},\) the standard free energy change? \(\Delta G^{\circ}\) allows determination of the equilibrium constant \(K\) for a reaction. How? How can one estimate the value of \(K\) at temperatures other than \(25^{\circ} \mathrm{C}\) for a reaction? How can one estimate the temperature where \(K=1\) for a reaction? Do all reactions have a specific temperature where \(K=1 ?\)

Calculate \(\Delta G^{\circ}\) for \(\mathrm{H}_{2} \mathrm{O}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(g)\) at \(600 . \mathrm{K}\) using the following data: $$\begin{aligned} &\mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(g) \quad K=2.3 \times 10^{6} \text { at } 600 . \mathrm{K}\\\ &2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(g) \quad K=1.8 \times 10^{37} \mathrm{at} 600 . \mathrm{K} \end{aligned}$$

Predict the sign of \(\Delta S^{\circ}\) for each of the following changes. a. \(\mathrm{K}(s)+\frac{1}{2} \mathrm{Br}_{2}(g) \longrightarrow \mathrm{KBr}(s)\) b. \(\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)\) c. \(\mathrm{KBr}(s) \longrightarrow \mathrm{K}^{+}(a q)+\mathrm{Br}^{-}(a q)\) d. \(\mathrm{KBr}(s) \longrightarrow \mathrm{KBr}(l)\)

Consider the dissociation of a weak acid HA \(\left(K_{\mathrm{a}}=4.5 \times 10^{-3}\right)\) in water: $$\mathrm{HA}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)$$ Calculate \(\Delta G^{\circ}\) for this reaction at \(25^{\circ} \mathrm{C}.\)

The equilibrium constant \(K\) for the reaction $$2 \mathrm{Cl}(g) \rightleftharpoons \mathrm{Cl}_{2}(g)$$ was measured as a function of temperature (Kelvin). A graph of \(\ln (K)\) versus \(1 / T\) for this reaction gives a straight line with a slope of \(1.352 \times 10^{4} \mathrm{K}\) and a \(y\) -intercept of \(-14.51 .\) Determine the values of \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) for this reaction. See Exercise 79.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free