Carbon monoxide is toxic because it bonds much more strongly to the iron in hemoglobin (Hgb) than does O_2. Consider the following reactions and approximate standard free energy changes: $$\begin{array}{cl} \mathrm{Hgb}+\mathrm{O}_{2} \longrightarrow \mathrm{HgbO}_{2} & \Delta G^{\circ}=-70 \mathrm{kJ} \\ \mathrm{Hgb}+\mathrm{CO} \longrightarrow \mathrm{HgbCO} & \Delta G^{\circ}=-80 \mathrm{kJ} \end{array}$$ Using these data, estimate the equilibrium constant value at \(25^{\circ} \mathrm{C}\) for the following reaction: $$\mathrm{HgbO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{HgbCO}+\mathrm{O}_{2}$$

Short Answer

Expert verified
The estimated equilibrium constant value at \(25^{\circ}\mathrm{C}\) for the given reaction \(\mathrm{HgbO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{HgbCO}+\mathrm{O}_{2}\) is \(1.10 \times 10^3\).

Step by step solution

01

Calculate the standard free energy change for the given reaction

We are given the standard free energy changes for reactions (1) and (2) as follows: (1) \(\mathrm{Hgb}+\mathrm{O}_{2} \longrightarrow \mathrm{HgbO}_{2}, \Delta G^{\circ}_1=-70 \mathrm{kJ}\). (2) \(\mathrm{Hgb}+\mathrm{CO} \longrightarrow \mathrm{HgbCO}, \Delta G^{\circ}_2=-80 \mathrm{kJ}\). We want to find the standard free energy change for the following reaction: \[ \mathrm{HgbO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{HgbCO}+\mathrm{O}_{2}. \] To get the desired reaction, we have to reverse reaction (1) and add it to reaction (2): \(-1 \times \mathrm{(1)}\) : \[\mathrm{HgbO}_{2} \longrightarrow \mathrm{Hgb}+\mathrm{O}_{2}, \Delta G^{\circ}_1'=70 \mathrm{kJ}\]. \(+1 \times \mathrm{(2)}\) : \[\mathrm{Hgb}+\mathrm{CO} \longrightarrow \mathrm{HgbCO}, \Delta G^{\circ}_2=-80 \mathrm{kJ}\]. Adding the two reactions: \[\mathrm{HgbO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{HgbCO}+\mathrm{O}_{2}, \Delta G^{\circ}=\Delta G^{\circ}_1'+\Delta G^{\circ}_2=70 \mathrm{kJ}- 80 \mathrm{kJ} = -10 \mathrm{kJ}\]. The standard free energy change for the given reaction is -10 kJ.
02

Calculate the equilibrium constant

The relation between standard free energy change and the equilibrium constant is given by: \[\Delta G^{\circ}=-RT \ln K\] Here, \(R = 8.3145 \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}\) is the gas constant, \(T = 25^{\circ}\mathrm{C} = 298\mathrm{K}\) is the temperature, and \(K\) is the equilibrium constant. We need to find the value of \(K\). First, convert the standard free energy change from kJ to J: \[\Delta G^{\circ}=-10\ \mathrm{kJ} = -10,000\ \mathrm{J}\]. Now, rearrange the equation and solve for \(K\): \[K = e^{-\frac{\Delta G^{\circ}}{RT}} = e^{\frac{10,000\ \mathrm{J}}{(8.3145\ \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}})(298\ \mathrm{K})}} \approx 1.10 \times 10^3\]. The estimated equilibrium constant value at \($25^{\circ}\mathrm{C}\) for the given reaction is \(1.10 \times 10^3\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Given the following data: $$2 \mathrm{H}_{2}(g)+\mathrm{C}(s) \longrightarrow \mathrm{CH}_{4}(g) \quad \Delta G^{\circ}=-51 \mathrm{kJ}$$ $$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta G^{\circ}=-474 \mathrm{kJ}$$ $$\mathrm{C}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) \quad \Delta G^{\circ}=-394 \mathrm{kJ}$$ Calculate \(\Delta G^{\circ}\) for \(\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)\)

What types of experiments can be carried out to determine whether a reaction is spontaneous? Does spontaneity have any relationship to the final equilibrium position of a reaction? Explain.

At \(100 .^{\circ} \mathrm{C}\) and \(1.00 \mathrm{atm}, \Delta H^{\circ}=40.6 \mathrm{kJ} / \mathrm{mol}\) for the vaporiza- tion of water. Estimate \(\Delta G^{\circ}\) for the vaporization of water at \(90 .^{\circ} \mathrm{C}\) and \(110 .^{\circ} \mathrm{C} .\) Assume \(\Delta H^{\circ}\) and \(\Delta S^{\circ}\) at \(100 .^{\circ} \mathrm{C}\) and 1.00 atm do not depend on temperature.

It is quite common for a solid to change from one structure to another at a temperature below its melting point. For example, sulfur undergoes a phase change from the rhombic crystal structure to the monoclinic crystal form at temperatures above \(95^{\circ} \mathrm{C}.\) a. Predict the signs of \(\Delta H\) and \(\Delta S\) for the process \(S_{\text {rhombic }}(s) \longrightarrow S_{\text {monoclinic }}(s).\) b. Which form of sulfur has the more ordered crystalline structure (has the smaller positional probability)?

For each of the following pairs of substances, which substance has the greater value of \(S^{\circ} ?\) a. \(\mathrm{C}_{\text {graphite }}(s)\) or \(\mathrm{C}_{\text {diamond }}(s)\) b. \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)\) or \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(g)\) c. \(\mathrm{CO}_{2}(s)\) or \(\mathrm{CO}_{2}(g)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free