Chapter 17: Problem 103
It took 2.30 min using a current of 2.00 A to plate out all the silver from 0.250 L of a solution containing Ag \(^{+} .\) What was the original concentration of \(\mathrm{Ag}^{+}\) in the solution?
Chapter 17: Problem 103
It took 2.30 min using a current of 2.00 A to plate out all the silver from 0.250 L of a solution containing Ag \(^{+} .\) What was the original concentration of \(\mathrm{Ag}^{+}\) in the solution?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe compound with the formula TII \(_{3}\) is a black solid. Given the following standard reduction potentials, $$ \begin{aligned} \mathrm{T}^{3+}+2 \mathrm{e}^{-} \longrightarrow & \mathrm{Tl}^{+} & & \mathscr{E}^{\circ}=1.25 \mathrm{V} \\ \mathrm{I}_{3}^{-}+2 \mathrm{e}^{-} & \longrightarrow 3 \mathrm{I}^{-} & & \mathscr{E}^{\circ}=0.55 \mathrm{V} \end{aligned} $$ would you formulate this compound as thallium(III) iodide or thallium(I) triiodide?
The solubility product for \(\operatorname{CuI}(s)\) is \(1.1 \times 10^{-12} .\) Calculate the value of \(\mathscr{E}^{\circ}\) for the half-reaction $$ \operatorname{CuI}(s)+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}(s)+\mathrm{I}^{-}(a q) $$
The table below lists the cell potentials for the 10 possible galvanic cells assembled from the metals \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D},\) and \(\mathrm{E},\) and their respective \(1.00 \space \mathrm{M} \space 2+\) ions in solution. Using the data in the table, establish a standard reduction potential table similar to Table \(17-1\) in the text. Assign a reduction potential of \(0.00 \mathrm{V}\) to the half-reaction that falls in the middle of the series. You should get two different tables. Explain why, and discuss what you could do to determine which table is correct. $$\begin{array}{|lcccc|} \hline & \begin{array}{c} \mathrm{A}(s) \text { in } \\ \mathrm{A}^{2+}(a q) \end{array} & \begin{array}{c} \mathrm{B}(s) \text { in } \\ \mathrm{B}^{2+}(a q) \end{array} & \begin{array}{c} \mathrm{c}(s) \text { in } \\ \mathrm{c}^{2+}(a q) \end{array} & \begin{array}{c} \mathrm{D}(s) \text { in } \\ \mathrm{D}^{2+}(a q) \end{array} \\ \hline \mathrm{E}(s) \text { in } \mathrm{E}^{2+}(a q) & 0.28 \mathrm{V} & 0.81 \mathrm{V} & 0.13 \mathrm{V} & 1.00 \mathrm{V} \\ \mathrm{D}(s) \text { in } \mathrm{D}^{2+}(a q) & 0.72 \mathrm{V} & 0.19 \mathrm{V} & 1.13 \mathrm{V} & \- \\ \mathrm{C}(s) \text { in } \mathrm{C}^{2+}(a q) & 0.41 \mathrm{V} & 0.94 \mathrm{V} & \- & \- \\ \mathrm{B}(s) \text { in } \mathrm{B}^{2+}(a q) & 0.53 \mathrm{V} & \- & \- & \- \\ \hline \end{array}$$
Specify which of the following equations represent oxidationreduction reactions, and indicate the oxidizing agent, the reducing agent, the species being oxidized, and the species being reduced. a. \(\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{CO}(g)+3 \mathrm{H}_{2}(g)\) b. \(2 \mathrm{AgNO}_{3}(a q)+\mathrm{Cu}(s) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{Ag}(s)\) c. \(\mathrm{Zn}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(g)\) d. \(2 \mathrm{H}^{+}(a q)+2 \mathrm{CrO}_{4}^{2-}(a q) \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)\)
Gold metal will not dissolve in either concentrated nitric acid or concentrated hydrochloric acid. It will dissolve, however, in aqua regia, a mixture of the two concentrated acids. The products of the reaction are the \(\mathrm{AuCl}_{4}^{-}\) ion and gaseous NO. Write a balanced equation for the dissolution of gold in aqua regia.
What do you think about this solution?
We value your feedback to improve our textbook solutions.