The blood alcohol \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\) level can be determined by titrating a sample of blood plasma with an acidic potassium dichromate solution, resulting in the production of \(\mathrm{Cr}^{3+}(a q)\) and carbon dioxide. The reaction can be monitored because the dichromate ion \(\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)\) is orange in solution, and the \(\mathrm{Cr}^{3+}\) ion is green. The unbalanced redox equation is $$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q) \longrightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{CO}_{2}(g)$$ If \(31.05 \mathrm{mL}\) of \(0.0600 M\) potassium dichromate solution is required to titrate \(30.0 \mathrm{g}\) blood plasma, determine the mass percent of alcohol in the blood.

Short Answer

Expert verified
The mass percent of alcohol in the blood is approximately 0.286%.

Step by step solution

01

Balance the Redox Equation

We will balance the redox equation using the half-reaction method. In the redox equation, \(\mathrm{Cr_2O_7^{2-}}\) and \(\mathrm{C_2H_5OH}\) are the oxidizing and reducing agents, respectively. We can write the half-reactions as follows: Oxidation Half-Reaction: \(\mathrm{C_2H_5OH \rightarrow CO_2}\) Reduction Half-Reaction: \(\mathrm{Cr_2O_7^{2-}(aq) \rightarrow Cr^{3+}(aq)}\) Balance the half-reactions: For oxidation half-reaction: i) Balance the carbon atoms by adding 2 molecules of CO₂. \(\mathrm{C_2H_5OH \rightarrow 2CO_2}\) ii) Balance the hydrogen atoms by adding 6H₂O to the right side. \(\mathrm{C_2H_5OH \rightarrow 2CO_2 + 6H_2O}\) iii) Balance the oxygen atoms by adding 6H⁺ to the left side. \(\mathrm{C_2H_5OH + 6H^+ \rightarrow 2CO_2 + 6H_2O}\) Now for the reduction half-reaction: i) Balance the chromium atoms by adding 2Cr³⁺. \(\mathrm{Cr_2O_7^{2-}(aq) \rightarrow 2Cr^{3+}(aq)}\) ii) Balance the oxygen atoms by adding 7 water molecules. \(\mathrm{Cr_2O_7^{2-}(aq) + 7H_2O \rightarrow 2Cr^{3+}(aq)}\) iii) Balance the hydrogen atoms and charges by adding 14H⁺. \(\mathrm{Cr_2O_7^{2-}(aq) + 14H^+ \rightarrow 2Cr^{3+}(aq) + 7H_2O}\) Now, we can combine the balanced half-reactions: \(\mathrm{C_2H_5OH(aq) + 6H^+(aq) + Cr_2O_7^{2-}(aq) + 14H^+(aq) \rightarrow 2CO_2(g) + 6H_2O(l) + 2Cr^{3+}(aq) + 7H_2O(l)}\) Simplify the equation: \(\mathrm{C_2H_5OH(aq) + Cr_2O_7^{2-}(aq) + 20H^+(aq) \rightarrow 2CO_2(g) + 2Cr^{3+}(aq) + 13H_2O(l)}\) This is our balanced redox equation.
02

Use Stoichiometry to Determine the Moles of Ethanol Present

We are given that 31.05 mL of 0.0600 M potassium dichromate solution is required for titration. First, we find the moles of dichromate ions, and then the moles of ethanol using the stoichiometry of the balanced equation. moles of \(\mathrm{Cr_2O_7^{2-}} = \mathrm{Volume} \times \mathrm{Molarity}\) moles of \(\mathrm{Cr_2O_7^{2-}} = (31.05 \times 10^{-3} \mathrm{L}) \times 0.0600 \mathrm{M} = 1.863 \times 10^{-3}\; \mathrm{mol}\) From the balanced equation, we see that 1 mol of \(\mathrm{Cr_2O_7^{2-}}\) reacts with 1 mol of \(\mathrm{C_2H_5OH}\). Thus, the moles of ethanol are the same as the moles of dichromate ions. moles of \(\mathrm{C_2H_5OH} = 1.863 \times 10^{-3}\; \mathrm{mol}\)
03

Calculate the Mass of Ethanol and Mass Percent

Next, we'll find the mass of ethanol present in the blood plasma and calculate the mass percent. To do this, we will use the molar mass of ethanol (C₂H₅OH), which is approximately \(46.07 \mathrm{g/mol}\). mass of \(\mathrm{C_2H_5OH} = \mathrm{moles} \times \mathrm{molar \, mass}\) mass of \(\mathrm{C_2H_5OH} = (1.863 \times 10^{-3}\; \mathrm{mol}) \times 46.07 \mathrm{g/mol} = 0.0858 \mathrm{g}\) Now, calculate the mass percent of ethanol in the blood plasma: mass percent \(= \frac{\mathrm{mass \, of \, ethanol}}{\mathrm{mass \, of \, blood \, plasma}} \times 100\%\) mass percent \(= \frac{0.0858\; \mathrm{g}}{30.0\; \mathrm{g}} \times 100\% = 0.286\%\) Therefore, the mass percent of alcohol in the blood is approximately 0.286%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Explain why cell potentials are not multiplied by the coefficients in the balanced redox equation. (Use the relationship between \(\Delta G\) and cell potential to do this.)

Consider the cell described below: $$ \mathrm{Al}\left|\mathrm{Al}^{3+}(1.00 M)\right|\left|\mathrm{Pb}^{2+}(1.00 M)\right| \mathrm{Pb} $$ Calculate the cell potential after the reaction has operated long enough for the \(\left[\mathrm{Al}^{3+}\right]\) to have changed by \(0.60 \mathrm{mol} / \mathrm{L}\). (Assume \(\left.T=25^{\circ} \mathrm{C} .\right)\)

You have a concentration cell with Cu electrodes and \(\left[\mathrm{Cu}^{2+}\right]\) \(=1.00 M\) (right side) and \(1.0 \times 10^{-4} M\) (left side). a. Calculate the potential for this cell at \(25^{\circ} \mathrm{C}\) b. The \(\mathrm{Cu}^{2+}\) ion reacts with \(\mathrm{NH}_{3}\) to form \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) by the following equation: $$\begin{aligned} &\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) & K=1.0 \times 10^{13} \end{aligned}$$ Calculate the new cell potential after enough \(\mathrm{NH}_{3}\) is added to the left cell compartment such that at equilibrium \(\left[\mathrm{NH}_{3}\right]=2.0 \mathrm{M}\)

Balance the following equations by the half-reaction method. a. \(\mathrm{Fe}(s)+\mathrm{HCl}(a q) \longrightarrow \mathrm{HFeCl}_{4}(a q)+\mathrm{H}_{2}(g)\) b. \(\mathrm{IO}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) \stackrel{\text { Acid }}{\longrightarrow} \mathrm{I}_{3}^{-}(a q)\) \(\mathbf{c} . \operatorname{Cr}(\mathrm{NCS})_{6}^{4-}(a q)+\mathrm{Ce}^{4+}(a q) \stackrel{\text { Acid }}{\longrightarrow}\) \(\mathrm{Cr}^{3+}(a q)+\mathrm{Ce}^{3+}(a q)+\mathrm{NO}_{3}^{-}(a q)+\mathrm{CO}_{2}(g)+\mathrm{SO}_{4}^{2-}(a q)\) d. \(\mathrm{CrI}_{3}(s)+\mathrm{Cl}_{2}(g) \stackrel{\text { Bawe }}{\longrightarrow}\) \(\mathrm{CrO}_{4}^{2-}(a q)+\mathrm{IO}_{4}^{-}(a q)+\mathrm{Cl}^{-}(a q)\) e. \(\mathrm{Fe}(\mathrm{CN})_{6}^{4-}(a q)+\mathrm{Ce}^{4+}(a q) \stackrel{\mathrm{Barc}}{\longrightarrow}\) \(\mathrm{Ce}(\mathrm{OH})_{3}(s)+\mathrm{Fe}(\mathrm{OH})_{3}(s)+\mathrm{CO}_{3}^{2-}(a q)+\mathrm{NO}_{3}^{-}(a q)\)Balance the following equations by the half- reaction method. a. \(\mathrm{Fe}(s)+\mathrm{HCl}(a q) \longrightarrow \mathrm{HFeCl}_{4}(a q)+\mathrm{H}_{2}(g)\) b. \(\mathrm{IO}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) \stackrel{\text { Acid }}{\longrightarrow} \mathrm{I}_{3}^{-}(a q)\) \(\mathbf{c} . \operatorname{Cr}(\mathrm{NCS})_{6}^{4-}(a q)+\mathrm{Ce}^{4+}(a q) \stackrel{\text { Acid }}{\longrightarrow}\) \(\mathrm{Cr}^{3+}(a q)+\mathrm{Ce}^{3+}(a q)+\mathrm{NO}_{3}^{-}(a q)+\mathrm{CO}_{2}(g)+\mathrm{SO}_{4}^{2-}(a q)\) d. \(\mathrm{CrI}_{3}(s)+\mathrm{Cl}_{2}(g) \stackrel{\text { Base }}{\longrightarrow}\) \(\mathrm{CrO}_{4}^{2-}(a q)+\mathrm{IO}_{4}^{-}(a q)+\mathrm{Cl}^{-}(a q)\) e. \(\mathrm{Fe}(\mathrm{CN})_{6}^{4-}(a q)+\mathrm{Ce}^{4+}(a q) \stackrel{\mathrm{Base}}{\longrightarrow}\) \(\mathrm{Ce}(\mathrm{OH})_{3}(s)+\mathrm{Fe}(\mathrm{OH})_{3}(s)+\mathrm{CO}_{3}^{2-}(a q)+\mathrm{NO}_{3}^{-}(a q)\)

A factory wants to produce \(1.00 \times 10^{3} \mathrm{kg}\) barium from the electrolysis of molten barium chloride. What current must be applied for \(4.00 \mathrm{h}\) to accomplish this?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free