Balance the following oxidation-reduction reactions that occur in acidic solution using the half-reaction method. a. \(\mathrm{I}^{-}(a q)+\mathrm{ClO}^{-}(a q) \rightarrow \mathrm{I}_{3}^{-}(a q)+\mathrm{Cl}^{-}(a q)\) b. \(\mathrm{As}_{2} \mathrm{O}_{3}(s)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}(a q)+\mathrm{NO}(g)\) c. \(\mathrm{Br}^{-}(a q)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{Br}_{2}(l)+\mathrm{Mn}^{2+}(a q)\) d. \(\mathrm{CH}_{3} \mathrm{OH}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) \rightarrow \mathrm{CH}_{2} \mathrm{O}(a q)+\mathrm{Cr}^{3+}(a q)\)

Short Answer

Expert verified
The balanced equations for the reactions are: a. \(2\mathrm{I}^{-}(a q) + \mathrm{ClO}^{-}(a q) + 2\mathrm{H}^{+}(a q) \rightarrow \mathrm{I}_{3}^{-}(a q) + \mathrm{Cl}^{-}(a q) + \mathrm{H}_{2}\mathrm{O}(l)\) b. \(\mathrm{As}_{2} \mathrm{O}_{3}(s) + 12\mathrm{H}^{+}(a q) + 2\mathrm{OH}^{-}(a q) + 2\mathrm{NO}_{3}^{-}(a q) \rightarrow 2\mathrm{H}_{3} \mathrm{AsO}_{4}(a q) + 2\mathrm{NO}(g) + 4\mathrm{H}_{2}\mathrm{O}(l)\) c. \(10\mathrm{Br}^{-}(a q) + 2\mathrm{MnO}_{4}^{-}(a q) + 16\mathrm{H}^{+}(a q) \rightarrow 5\mathrm{Br}_{2}(l) + 2\mathrm{Mn}^{2+}(a q) + 8\mathrm{H}_{2}\mathrm{O}(l)\) d. \(3\mathrm{CH}_{3} \mathrm{OH}(a q) + \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) + 14\mathrm{H}^{+}(a q) \rightarrow 3\mathrm{CH}_{2} \mathrm{O}(a q) + 2\mathrm{Cr}^{3+}(a q) + 7\mathrm{H}_{2}\mathrm{O}(l)\)

Step by step solution

01

a. Balancing I- + ClO- → I3- + Cl-

Step 1: Split the reaction into two half-reactions Oxidation half-reaction: \(\mathrm{I}^{-} \rightarrow \mathrm{I}_{3}^{-}\) Reduction half-reaction: \(\mathrm{ClO}^{-} \rightarrow \mathrm{Cl}^{-}\) Step 2: Balance atoms and charges in each half-reaction Oxidation: Add 2 I- to the left side and 2e- to the right side Balanced oxidation half-reaction: \(2\mathrm{I}^{-} \rightarrow \mathrm{I}_{3}^{-} + 2e^{-}\) Reduction: Add H2O to the left side and 2H+ + 2e- to the right side Balanced reduction half-reaction: \(\mathrm{ClO}^{-} + 2\mathrm{H}^{+} + 2e^{-} \rightarrow \mathrm{Cl}^{-} + \mathrm{H}_{2}\mathrm{O}\) Step 3: Combine the balanced half-reactions \(2\mathrm{I}^{-} + \mathrm{ClO}^{-} + 2\mathrm{H}^{+} \rightarrow \mathrm{I}_{3}^{-} + \mathrm{Cl}^{-} + \mathrm{H}_{2}\mathrm{O}\) The balanced equation for reaction a is: \(2\mathrm{I}^{-}(a q) + \mathrm{ClO}^{-}(a q) + 2\mathrm{H}^{+}(a q) \rightarrow \mathrm{I}_{3}^{-}(a q) + \mathrm{Cl}^{-}(a q) + \mathrm{H}_{2}\mathrm{O}(l)\)
02

b. Balancing As2O3 + NO3- → H3AsO4 + NO

Step 1: Split the reaction into two half-reactions Oxidation half-reaction: \(\mathrm{As}_{2} \mathrm{O}_{3} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}\) Reduction half-reaction: \(\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}\) Step 2: Balance atoms and charges in each half-reaction Oxidation: Add 6H+ to the right side and 2 OH- to the left side Balanced oxidation half-reaction: \(\mathrm{As}_{2} \mathrm{O}_{3} + 2\mathrm{OH}^{-} \rightarrow 2\mathrm{H}_{3} \mathrm{AsO}_{4} + 4e^{-}\) Reduction: Add 2H2O to the right side and 6H+ + 6e- to the left side Balanced reduction half-reaction: \(2(\mathrm{NO}_{3}^{-} + 3\mathrm{H}^{+}) \rightarrow 2\mathrm{NO} + 6\mathrm{H}_{2}\mathrm{O}\) Step 3: Combine the balanced half-reactions (multiply reduction half-reaction by 2) \(\mathrm{As}_{2} \mathrm{O}_{3} + 2\mathrm{OH}^{-} + 2(\mathrm{NO}_{3}^{-} + 3\mathrm{H}^{+}) \rightarrow 2\mathrm{H}_{3} \mathrm{AsO}_{4} + 2\mathrm{NO} + 6\mathrm{H}_{2}\mathrm{O}\) The balanced equation for reaction b is: \(\mathrm{As}_{2} \mathrm{O}_{3}(s) + 12\mathrm{H}^{+}(a q) + 2\mathrm{OH}^{-}(a q) + 2\mathrm{NO}_{3}^{-}(a q) \rightarrow 2\mathrm{H}_{3} \mathrm{AsO}_{4}(a q) + 2\mathrm{NO}(g) + 4\mathrm{H}_{2}\mathrm{O}(l)\)
03

c. Balancing Br- + MnO4- → Br2 + Mn2+

Step 1: Split the reaction into two half-reactions Oxidation half-reaction: \(\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}\) Reduction half-reaction: \(\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}\) Step 2: Balance atoms and charges in each half-reaction Oxidation: Add 2 Br- to the left side and 2e- to the right side Balanced oxidation half-reaction: \(2\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2} + 2e^{-}\) Reduction: Add 4H2O to the left side and 8H+ + 5e- to the right side Balanced reduction half-reaction: \(\mathrm{MnO}_{4}^{-} + 8\mathrm{H}^{+} + 5e^{-} \rightarrow \mathrm{Mn}^{2+} + 4\mathrm{H}_{2}\mathrm{O}\) Step 3: Combine the balanced half-reactions (multiply oxidation half-reaction by 5, reduction half-reaction by 2) \(10\mathrm{Br}^{-} + 2\mathrm{MnO}_{4}^{-} + 16\mathrm{H}^{+} \rightarrow 5\mathrm{Br}_{2} + 2\mathrm{Mn}^{2+} + 8\mathrm{H}_{2}\mathrm{O}\) The balanced equation for reaction c is: \(10\mathrm{Br}^{-}(a q) + 2\mathrm{MnO}_{4}^{-}(a q) + 16\mathrm{H}^{+}(a q) \rightarrow 5\mathrm{Br}_{2}(l) + 2\mathrm{Mn}^{2+}(a q) + 8\mathrm{H}_{2}\mathrm{O}(l)\)
04

d. Balancing CH3OH + Cr2O72- → CH2O + Cr3+

Step 1: Split the reaction into two half-reactions Oxidation half-reaction: \(\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{O}\) Reduction half-reaction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cr}^{3+}\) Step 2: Balance atoms and charges in each half-reaction Oxidation: Add H+ to the right side and 2e- to the left side Balanced oxidation half-reaction: \(\mathrm{CH}_{3} \mathrm{OH} + 2e^{-} \rightarrow \mathrm{CH}_{2} \mathrm{O} + \mathrm{H}^{+}\) Reduction: Add 7H2O to the left side and 14H+ + 6e- to the right side Balanced reduction half-reaction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 14\mathrm{H}^{+} + 6e^{-} \rightarrow 2\mathrm{Cr}^{3+} + 7\mathrm{H}_{2}\mathrm{O}\) Step 3: Combine the balanced half-reactions (multiply oxidation half-reaction by 3, reduction half-reaction by 1) \(3\mathrm{CH}_{3} \mathrm{OH} + 6e^{-} + \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} + 14\mathrm{H}^{+} \rightarrow 3(\mathrm{CH}_{2} \mathrm{O} + \mathrm{H}^{+}) + 2\mathrm{Cr}^{3+} + 7\mathrm{H}_{2}\mathrm{O}\) The balanced equation for reaction d is: \(3\mathrm{CH}_{3} \mathrm{OH}(a q) + \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) + 14\mathrm{H}^{+}(a q) \rightarrow 3\mathrm{CH}_{2} \mathrm{O}(a q) + 2\mathrm{Cr}^{3+}(a q) + 7\mathrm{H}_{2}\mathrm{O}(l)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Gold is produced electrochemically from an aqueous solution of \(\mathrm{Au}(\mathrm{CN})_{2}^{-}\) containing an excess of \(\mathrm{CN}^{-} .\) Gold metal and oxygen gas are produced at the electrodes. What amount (moles) of \(\mathbf{O}_{2}\) will be produced during the production of 1.00 mole of gold?

Consider the cell described below: $$ \mathrm{Al}\left|\mathrm{Al}^{3+}(1.00 M)\right|\left|\mathrm{Pb}^{2+}(1.00 M)\right| \mathrm{Pb} $$ Calculate the cell potential after the reaction has operated long enough for the \(\left[\mathrm{Al}^{3+}\right]\) to have changed by \(0.60 \mathrm{mol} / \mathrm{L}\). (Assume \(\left.T=25^{\circ} \mathrm{C} .\right)\)

You have a concentration cell in which the cathode has a silver electrode with 0.10 \(M\) Ag \(^{+}\). The anode also has a silver electrode with \(\mathrm{Ag}^{+}(a q), 0.050 \space \mathrm{M}\space \mathrm{S}_{2} \mathrm{O}_{3}^{2-},\) and \(1.0 \times 10^{-3} \mathrm{M}\) \(\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}^{3-} .\) You read the voltage to be 0.76 \(\mathrm{V}\) a. Calculate the concentration of \(\mathrm{Ag}^{+}\) at the anode. b. Determine the value of the equilibrium constant for the formation of \(\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}^{3-}\) $$\mathrm{Ag}^{+}(a q)+2 \mathrm{S}_{2} \mathrm{O}_{3}^{2-}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}^{3-}(a q) \quad K=?$$

Is the following statement true or false? Concentration cells work because standard reduction potentials are dependent on concentration. Explain.

You have a concentration cell with Cu electrodes and \(\left[\mathrm{Cu}^{2+}\right]\) \(=1.00 M\) (right side) and \(1.0 \times 10^{-4} M\) (left side). a. Calculate the potential for this cell at \(25^{\circ} \mathrm{C}\) b. The \(\mathrm{Cu}^{2+}\) ion reacts with \(\mathrm{NH}_{3}\) to form \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) by the following equation: $$\begin{aligned} &\mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) & K=1.0 \times 10^{13} \end{aligned}$$ Calculate the new cell potential after enough \(\mathrm{NH}_{3}\) is added to the left cell compartment such that at equilibrium \(\left[\mathrm{NH}_{3}\right]=2.0 \mathrm{M}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free