Identify the ions formed by the dissociation of each electrolyte and their stoichiometry and Calculate molarity of each ion
Now, we will calculate the molarity of the resulting ions in each solution:
a.
\(\mathrm{Ca(NO}_{3})_{2}\) dissociates into \(\mathrm{Ca^{2+}}\) and \(\mathrm{NO_3^-}\), with a stoichiometry of 1:2.
\(\mathrm{M(Ca^{2+})} = 0.00100\, \mathrm{M}\)
\(\mathrm{M(NO_3^{-})} = 2 \times 0.00100\, \mathrm{M} = 0.00200\, \mathrm{M}\)
b.
\(\mathrm{Na}_{2}\mathrm{SO}_{4}\) dissociates into \(\mathrm{Na^{+}}\) and \(\mathrm{SO_4^{2-}}\), with a stoichiometry of 2:1.
\(\mathrm{M(Na^{+})} = 2 \times 2.0\, \mathrm{M} = 4.0\, \mathrm{M}\)
\(\mathrm{M(SO_4^{2-})} = 2.0\, \mathrm{M}\)
c.
\(\mathrm{NH}_{4}\mathrm{Cl}\) dissociates into \(\mathrm{NH_4^{+}}\) and \(\mathrm{Cl^-}\), with a stoichiometry of 1:1.
\(\mathrm{M(NH_4^{+})} = 0.187\, \mathrm{M}\)
\(\mathrm{M(Cl^{-})} = 0.187\, \mathrm{M}\)
d.
\(\mathrm{K}_{3}\mathrm{PO}_{4}\) dissociates into \(\mathrm{K^{+}}\) and \(\mathrm{PO_4^{3-}}\), with a stoichiometry of 3:1.
\(\mathrm{M(K^{+})} = 3\times 0.0188\, \mathrm{M} = 0.0564\, \mathrm{M}\)
\(\mathrm{M(PO_4^{3-})} = 0.0188\, \mathrm{M}\)
Final concentrations of ions:
a. \(\mathrm{Ca^{2+}}: 0.00100\, \mathrm{M}\), \(\mathrm{NO_3^{-}}: 0.00200\, \mathrm{M}\)
b. \(\mathrm{Na^{+}}: 4.0\, \mathrm{M}\), \(\mathrm{SO_4^{2-}}: 2.0\, \mathrm{M}\)
c. \(\mathrm{NH_4^{+}}: 0.187\, \mathrm{M}\), \(\mathrm{Cl^{-}}: 0.187\, \mathrm{M}\)
d. \(\mathrm{K^{+}}: 0.0564\, \mathrm{M}\), \(\mathrm{PO_4^{3-}}: 0.0188\, \mathrm{M}\)