Combustion reactions involve reacting a substance with oxygen. When compounds containing carbon and hydrogen are combusted, carbon dioxide and water are the products. Using the enthalpies of combustion for \(\mathrm{C}_{4} \mathrm{H}_{4}(-2341 \mathrm{kJ} / \mathrm{mol}), \mathrm{C}_{4} \mathrm{H}_{8}\) \((-2755 \mathrm{kJ} / \mathrm{mol}),\) and \(\mathrm{H}_{2}(-286 \mathrm{kJ} / \mathrm{mol}),\) calculate \(\Delta H\) for the reaction $$\mathrm{C}_{4} \mathrm{H}_{4}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{8}(g)$$

Short Answer

Expert verified
The change in enthalpy for the desired reaction \(\mathrm{C}_{4} \mathrm{H}_{4}(g) + 2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{8}(g)\) is \(\Delta H = 4524 \, \mathrm{kJ/mol}\).

Step by step solution

01

Write the combustion reactions

Write the combustion reactions for \(\mathrm{C}_{4} \mathrm{H}_{4}\), \(\mathrm{H}_{2}\) and \(\mathrm{C}_{4} \mathrm{H}_{8}\) considering that the products are carbon dioxide (CO2) and water (H2O). 1. Combustion of \(\mathrm{C}_{4} \mathrm{H}_{4}\): $$\mathrm{C}_{4} \mathrm{H}_{4}(g) + 5 \mathrm{O}_{2}(g) \longrightarrow 4\mathrm{CO}_{2}(g) + 2\mathrm{H}_{2}\mathrm{O}(g) \qquad \Delta H_{1} = -2341 \, \mathrm{kJ/mol}$$ 2. Combustion of \(\mathrm{H}_{2}\): $$\mathrm{H}_{2}(g) + \frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2}\mathrm{O}(g) \qquad \Delta H_{2} = -286 \, \mathrm{kJ/mol}$$ 3. Combustion of \(\mathrm{C}_{4} \mathrm{H}_{8}\): $$\mathrm{C}_{4} \mathrm{H}_{8}(g) + 6 \mathrm{O}_{2}(g) \longrightarrow 4\mathrm{CO}_{2}(g) + 4\mathrm{H}_{2}\mathrm{O}(g) \qquad \Delta H_{3} = -2755 \, \mathrm{kJ/mol}$$
02

Rearrange the combustion reactions to match the desired reaction

To calculate the change in enthalpy for the desired reaction \(\mathrm{C}_{4} \mathrm{H}_{4}(g) + 2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{8}(g)\), we need to rearrange the three given combustion reactions according to Hess's Law. 1. Reverse the first reaction, which will change the sign of \(\Delta H_{1}\): $$-[\mathrm{C}_{4} \mathrm{H}_{4}(g) + 5 \mathrm{O}_{2}(g) \longrightarrow 4\mathrm{CO}_{2}(g) + 2\mathrm{H}_{2}\mathrm{O}(g)]$$ $$4\mathrm{CO}_{2}(g) + 2\mathrm{H}_{2}\mathrm{O}(g) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{4}(g) + 5 \mathrm{O}_{2}(g) \qquad \Delta H_{1}^{\prime} = 2341 \, \mathrm{kJ/mol}$$ 2. Multiply the second reaction by 2 to get 2 \(\mathrm{H}_{2}\) molecules: $$2[\mathrm{H}_{2}(g) + \frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2}\mathrm{O}(g)]$$ $$2 \mathrm{H}_{2}(g) + \mathrm{O}_{2}(g) \longrightarrow 2\mathrm{H}_{2}\mathrm{O}(g) \qquad 2\Delta H_{2} = -572 \, \mathrm{kJ/mol}$$ 3. Reverse the third reaction, which will change the sign of \(\Delta H_{3}\): $$-[\mathrm{C}_{4} \mathrm{H}_{8}(g) + 6 \mathrm{O}_{2}(g) \longrightarrow 4\mathrm{CO}_{2}(g) + 4\mathrm{H}_{2}\mathrm{O}(g)]$$ $$4\mathrm{CO}_{2}(g) + 4\mathrm{H}_{2}\mathrm{O}(g) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{8}(g) + 6 \mathrm{O}_{2}(g) \qquad \Delta H_{3}^{\prime} = 2755 \, \mathrm{kJ/mol}$$
03

Add the modified reactions together

Add the three modified reactions together and cancel out common terms on both sides: $$4\mathrm{CO}_{2}(g) + 2\mathrm{H}_{2}\mathrm{O}(g) + 2\mathrm{H}_{2}(g) + \mathrm{O}_{2}(g) + 4\mathrm{CO}_{2}(g) + 4\mathrm{H}_{2}\mathrm{O}(g) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{4}(g) + 5\mathrm{O}_{2}(g) + 2\mathrm{H}_{2}\mathrm{O}(g) + \mathrm{C}_{4} \mathrm{H}_{8}(g) + 6\mathrm{O}_{2}(g)$$ Cancelling the terms: $$\mathrm{C}_{4} \mathrm{H}_{4}(g) + 2\mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{8}(g)$$
04

Calculate the change in enthalpy for the desired reaction

Finally, sum the changes in enthalpy of the modified reactions to get the change in enthalpy for the desired reaction: $$\Delta H = \Delta H_{1}^{\prime} + 2\Delta H_{2} + \Delta H_{3}^{\prime} = 2341 - 572 + 2755 = \boxed{4524 \, \mathrm{kJ/mol}}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a coffee-cup calorimeter, \(150.0 \mathrm{mL}\) of \(0.50 \mathrm{M}\) HCl is added to \(50.0 \mathrm{mL}\) of \(1.00 \mathrm{M} \mathrm{NaOH}\) to make \(200.0 \mathrm{g}\) solution at an initial temperature of \(48.2^{\circ} \mathrm{C}\). If the enthalpy of neutralization for the reaction between a strong acid and a strong base is \(-56 \mathrm{kJ} / \mathrm{mol},\) calculate the final temperature of the calorimeter contents. Assume the specific heat capacity of the solution is \(4.184 \mathrm{J} / \mathrm{g} \cdot^{\circ} \mathrm{C}\) and assume no heat loss to the surroundings.

Liquid water turns to ice. Is this process endothermic or exothermic? Explain what is occurring using the terms system, surroundings, heat, potential energy, and kinetic energy in the discussion.

Use the following standard enthalpies of formation to estimate the \(\mathrm{N}-\mathrm{H}\) bond energy in ammonia: \(\mathrm{N}(g), 472.7 \mathrm{kJ} / \mathrm{mol} ; \mathrm{H}(g)\) \(216.0 \mathrm{kJ} / \mathrm{mol} ; \mathrm{NH}_{3}(g),-46.1 \mathrm{kJ} / \mathrm{mol} .\) Compare your value to the one in Table \(3-3\).

A system releases \(125 \mathrm{kJ}\) of heat while \(104 \mathrm{kJ}\) of work is done on it. Calculate \(\Delta E\).

A coffee-cup calorimeter initially contains 125 g water at \(24.2^{\circ} \mathrm{C} .\) Potassium bromide \((10.5 \mathrm{g}),\) also at \(24.2^{\circ} \mathrm{C},\) is added to the water, and after the KBr dissolves, the final temperature is \(21.1^{\circ} \mathrm{C} .\) Calculate the enthalpy change for dissolving the salt in J/g and kJ/mol. Assume that the specific heat capacity of the solution is \(4.18 \mathrm{J} /^{\circ} \mathrm{C} \cdot \mathrm{g}\) and that no heat is transferred to the surroundings or to the calorimeter.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free