Chapter 9: Problem 20
Describe what is meant by a dynamic equilibrium in terms of the vapor pressure of a liquid.
Chapter 9: Problem 20
Describe what is meant by a dynamic equilibrium in terms of the vapor pressure of a liquid.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat quantity of energy does it take to convert 0.500 kg ice at \(-20 .^{\circ} \mathrm{C}\) to steam at \(250 .^{\circ} \mathrm{C} ?\) Specific heat capacities: ice, \(2.03 \mathrm{J} / \mathrm{g} \cdot^{\circ} \mathrm{C} ;\) liquid, \(4.2 \mathrm{J} / \mathrm{g} \cdot^{\circ} \mathrm{C} ;\) steam, \(2.0 \mathrm{J} / \mathrm{g} \cdot^{\circ} \mathrm{C} ; \Delta H_{\mathrm{vap}}=\) \(40.7 \mathrm{kJ} / \mathrm{mol} ; \Delta H_{\mathrm{fus}}=6.02 \mathrm{kJ} / \mathrm{mol}.\)
In solid KCl the smallest distance between the centers of a potassium ion and a chloride ion is \(314 \mathrm{pm} .\) Calculate the length of the edge of the unit cell and the density of KCl, assuming it has the same structure as sodium chloride.
A \(20.0-\mathrm{g}\) sample of ice at \(-10.0^{\circ} \mathrm{C}\) is mixed with \(100.0 \mathrm{g}\) water at \(80.0^{\circ} \mathrm{C}\). Calculate the final temperature of the mixture assuming no heat loss to the surroundings. The heat capacities of \(\mathrm{H}_{2} \mathrm{O}(s)\) and \(\mathrm{H}_{2} \mathrm{O}(l)\) are 2.03 and \(4.18 \mathrm{J} / \mathrm{g} \cdot^{\circ} \mathrm{C},\) respectively, and the enthalpy of fusion for ice is \(6.02 \mathrm{kJ} / \mathrm{mol}\).
Consider the following enthalpy changes: $$\begin{aligned} \mathrm{F}^{-}+\mathrm{HF} \longrightarrow \mathrm{FHF}^{-} & \Delta H=-155 \mathrm{kJ} / \mathrm{mol} \\ \left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}+\mathrm{HF} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}--\mathrm{HF} & \Delta H=-46 \mathrm{kJ} / \mathrm{mol} \\\ \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{HOH}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}--\mathrm{HOH}(\text { in ice }) & \Delta H=-21 \mathrm{kJ} / \mathrm{mol} \end{aligned}$$ How do the strengths of hydrogen bonds vary with the electronegativity of the element to which hydrogen is bonded? Where in the preceding series would you expect hydrogen bonds of the following type to fall?
You are given a small bar of an unknown metal X. You find the density of the metal to be \(10.5 \mathrm{g} / \mathrm{cm}^{3} .\) An X-ray diffraction experiment measures the edge of the face-centered cubic unit cell as \(4.09 Å\left(1 Å=10^{-10} \mathrm{m}\right) .\) Identify X.
What do you think about this solution?
We value your feedback to improve our textbook solutions.