Draw a curve similar to that shown in Figure 14.23 for a series of solutions of\(N{H_3}\) . Plot [OH] on the vertical axis and the total concentration of \(N{H_3}\) (both ionized and nonionized \(N{H_3}\) molecules) on the horizontal axis. Let the total concentration of \(N{H_3}\) vary from \(1 \times 1{0^{ - 10}}M\) to \(1 \times 1{0^{ - 2}}M.\)

Short Answer

Expert verified

\(\begin{array}{*{20}{l}}{\left[ {{\rm{N}}{{\rm{H}}_3}} \right] = 1 \cdot {{10}^{ - 10}}{\rm{M}}/\left[ {{\rm{O}}{{\rm{H}}^ - }} \right] = 1.001 \cdot {{10}^{ - 7}}{\rm{M}}}\\{\left[ {{\rm{N}}{{\rm{H}}_3}} \right] = 1 \cdot {{10}^{ - 9}}{\rm{M}}/\left[ {{\rm{O}}{{\rm{H}}^ - }} \right] = 1.01 \cdot {{10}^{ - 7}}{\rm{M}}}\\{\left[ {{\rm{N}}{{\rm{H}}_3}} \right] = 1 \cdot {{10}^{ - 8}}{\rm{M}}/\left[ {O{H^ - }} \right] = 1.1 \cdot {{10}^{ - 7}}{\rm{M}}}\\{\left[ {{\rm{N}}{{\rm{H}}_3}} \right] = 1 \cdot {{10}^{ - 7}}{\rm{M}}/\left[ {{\rm{O}}{{\rm{H}}^ - }} \right] = 2 \cdot {{10}^{ - 7}}{\rm{M}}}\\{\left[ {{\rm{N}}{{\rm{H}}_3}} \right] = 1 \cdot {{10}^{ - 6}}{\rm{M}}/\left[ {O{H^ - }} \right] = 1.05 \cdot {{10}^{ - 6}}{\rm{M}}}\\{\left[ {{\rm{N}}{{\rm{H}}_3}} \right] = 1 \cdot {{10}^{ - 5}}{\rm{M}}/\left[ {O{H^ - }} \right] = 7.23 \cdot {{10}^{ - 6}}{\rm{M}}}\\{\left[ {{\rm{N}}{{\rm{H}}_3}} \right] = 1 \cdot {{10}^{ - 4}}{\rm{M}}/\left[ {{\rm{O}}{{\rm{H}}^ - }} \right] = 3.44 \cdot {{10}^{ - 5}}{\rm{M}}}\\{\left[ {{\rm{N}}{{\rm{H}}_3}} \right] = 1 \cdot {{10}^{ - 3}}{\rm{M}}/\left[ {{\rm{O}}{{\rm{H}}^ - }} \right] = 1.25 \cdot {{10}^{ - 4}}{\rm{M}}}\\{\left[ {{\rm{N}}{{\rm{H}}_3}} \right] = 1 \cdot {{10}^{ - 2}}{\rm{M}}/\left[ {O{H^ - }} \right] = 4.15 \cdot {{10}^{ - 4}}{\rm{M}}}\end{array}\)

Step by step solution

01

To find the concentration on \({\bf{N}}{{\bf{H}}_{\bf{3}}}{\bf{varies 1 \times 1}}{{\bf{0}}^{{\bf{ - 10}}}}{\bf{M}}\)

The reaction

-\({K_b}\)of\(N{H_3}\)is\(1.8 \times 1{0^{ - 5}}\)

- Concentration of\(N{H_3}\)varies from\(1 \times 1{0^{ - 10}}M\)to\(1 \times 1{0^{ - 2}}M\)Let us draw a curve for a series of solutions of\(N{H_3}\)( vertical axis\(\left[ {O{H^ - }} \right]\)and horizontal axs\(\left[ {N{H_3}} \right]\)(ionized and nonionized) )

- Since the concentration of\(O{H^ - }\)ion in pure water is\(1 \times 1{0^{ - 7}}\), the initial concentration of\(O{H^ - }\)in a given solution will be\(1 \cdot 1{0^{ - 7}}.\)

\(\left[ {N{H_3}} \right] = 1 \times 1{0^{ - 10}}M\)

\(N{H_3}(aq) \to \)

\(\)\(N{H_4}^ + (aq) + \)

\(OH(aq)\)

Initial (M)

\({1.10^{ - 10}}\)

\(0\)

\({1.10^{ - 7}}\)

Change (M)

-X

+X

+X

Equilibrium (M)

\({1.10^{ - 10}} - X\)

X

\({1.10^{ - 7}} + X\)

\(\begin{array}{l}{K_b} = \frac{{\left[ {{\rm{NH}} + {\rm{H}}_4^ + } \right] \cdot \left[ {{\rm{O}}{{\rm{H}}^ - }} \right]}}{{\left[ {{\rm{N}}{{\rm{H}}_3}} \right]}}\\1.8 \cdot {10^{ - 5}} = \frac{{x \cdot \left( {1 \cdot {{10}^{ - 7}} + x} \right)}}{{1 \cdot {{10}^{ - 10}} - x}}\\1.8 \cdot {10^{ - 15}} - 1.8 \cdot {10^{ - 5}}x = 1 \cdot {10^{ - 7}}x + {x^2}\\0 = {x^2} + 1.81 \cdot {10^{ - 5}}x - 1.8 \cdot {10^{ - 15}}\\x = 1 \cdot {10^{ - 10}}\\\left[ {{{\rm{H}}_3}{{\rm{O}}^ + }} \right] = 1 \cdot {10^{ - 7}} + 1 \cdot {10^{ - 10}} = 1.001 \cdot {10^{ - 7}}\end{array}\)

02

To find the concentration on \(\left[ {{\bf{N}}{{\bf{H}}_{\bf{3}}}} \right]{\bf{ varies 1 \times 1}}{{\bf{0}}^{{\bf{ - 9}}}}{\bf{M}}\)

\(\left[ {N{H_3}} \right] = 1 \times 1{0^{ - 9}}M\)

\(N{H_3}(aq) \to \)

\(\)\(N{H_4}^ + (aq) + \)

\(OH(aq)\)

Initial (M)

\({1.10^{ - 9}}\)

\(0\)

\({1.10^{ - 7}}\)

Change (M)

-X

+X

+X

Equilibrium (M)

\({1.10^{ - 9}} - X\)

X

\({1.10^{ - 7}} + X\)

\(\begin{array}{l}{K_b} = \frac{{\left[ {N{\rm{ I }}_4^ + } \right] \cdot \left[ {O{1^ - }} \right]}}{{\left[ {{N_3}} \right]}}\\1.8 \cdot {10^{ - 5}} = \frac{{x \cdot \left( {1 \cdot {{10}^7} + x} \right)}}{{1 \cdot {{10}^{ - 9}} - x}}\\1.8 \cdot {10^{ - 14}} - 1.8 \cdot {10^{ - 5}}x = 1 \cdot {10^{ - 7}}x + {x^{\scriptstyle2\atop\scriptstyle}}\\0 = {x^2} + 1.81 \cdot {10^{ - 5}}x - 1.8 \cdot {10^{ - 14}}\\x = 1 \cdot {10^{ - 9}}\\\left[ {{{\rm{H}}_3}{{\rm{O}}^ + }} \right] = 1 \cdot {10^{ - 7}} + 1 \cdot {10^{ - 9}} = 1.01 \cdot {10^{ - 7}}\end{array}\)

03

To find the concentration on \(\left[ {{\bf{N}}{{\bf{H}}_{\bf{3}}}} \right]{\bf{ varies 1 \times 1}}{{\bf{0}}^{{\bf{ - 8}}}}{\bf{ M}}\)

\(\left[ {N{H_3}} \right] = 1 \times 1{0^{ - 8}} M\)

\(N{H_3}(aq) \to \)

\(\)\(N{H_4}^ + (aq) + \)

\(OH(aq)\)

Initial (M)

\({1.10^{ - 8}}\)

\(0\)

\({1.10^{ - 7}}\)

Change (M)

-X

+X

+X

Equilibrium (M)

\({1.10^{ - 8}} - X\)

X

\({1.10^{ - 7}} + X\)

\(\begin{array}{l}{K_b} = \frac{{\left[ {NH_1^ + } \right] \cdot \left[ {O{H^ - }} \right]}}{{\left[ {N{H_3}} \right]}}\\1.8 \cdot {10^{ - 5}} = \frac{{x \cdot \left( {1 \cdot {{10}^{ - 7}} + x} \right)}}{{1 \cdot {{10}^{ - 8}} - x}}\\1.8 \cdot {10^{ - 13}} - 1.8 \cdot {10^{ - 5}}x = 1 \cdot {10^{ - 7}}x + {x^2}\\0 = {x^2} + 1.81 \cdot {10^{ - 5}}x - 1.8 \cdot {10^{ - 13}}\\x = 1 \cdot {10^{ - 8}}\\\left[ {{H_3}{O^ + }} \right] = 1 \cdot {10^{ - 7}} + 1 \cdot {10^{ - 8}} = 1.1 \cdot {10^{ - 7}}\end{array}\)

04

To find the concentration on \(\left[ {{\bf{N}}{{\bf{H}}_{\bf{3}}}} \right]{\bf{ varies 1 \times 1}}{{\bf{0}}^{{\bf{ - 7}}}}{\bf{M}}\)

\(\left[ {N{H_3}} \right] = 1 \times 1{0^{ - 7}}M\)

\(N{H_3}(aq) \to \)

\(\)\(N{H_4}^ + (aq) + \)

\(OH(aq)\)

Initial (M)

\({1.10^{ - 7}}\)

\(0\)

\({1.10^{ - 7}}\)

Change (M)

-X

+X

+X

Equilibrium (M)

\({1.10^{ - 7}} - X\)

X

\({1.10^{ - 7}} + X\)

\(\begin{array}{l}{K_b} = \frac{{\left[ {{\rm{NH}}_1^ + } \right] \cdot \left[ {{\rm{OH}}{{\rm{H}}^ - }} \right]}}{{\left| {{\rm{N}}{{\rm{H}}_3}} \right|}}\\1.8 \cdot {10^{ - 5}} = \frac{{x \cdot \left( {1 \cdot {{10}^{ - 7}} + x} \right)}}{{1 \cdot {{10}^{ - 7}} - x}}\\1.8 \cdot {10^{ - 12}} - 1.8 \cdot {10^{ - 5}}x = 1 \cdot {10^{ - 7}}x + {x^2}\\0 = {x^2} + 1.81 \cdot {10^{ - 5}}x - 1.8 \cdot {10^{ - 12}}\\x = 1 \cdot {10^{ - 7}}\\\left[ {{{\rm{H}}_3}{{\rm{O}}^ + }} \right] = 1 \cdot {10^{ - 7}} + 1 \cdot {10^{ - 7}} = 2 \cdot {10^{ - 7}}\end{array}\)

05

To find the concentration on \(\left[ {{\bf{N}}{{\bf{H}}_{\bf{3}}}} \right]{\bf{ varies 1 \times 1}}{{\bf{0}}^{{\bf{ - 6}}}}{\bf{M}}\)

\(\left[ {N{H_3}} \right] = 1 \times 1{0^{ - 6}}M\)

\(N{H_3}(aq) \to \)

\(\)\(N{H_4}^ + (aq) + \)

\(OH(aq)\)

Initial (M)

\({1.10^{ - 6}}\)

\(0\)

\({1.10^{ - 7}}\)

Change (M)

-X

+X

+X

Equilibrium (M)

\({1.10^{ - 6}} - X\)

X

\({1.10^{ - 7}} + X\)

\(\begin{array}{l}{K_b} = \frac{{\left[ {{\rm{NH}}_1^ + } \right] \cdot \left[ {{\rm{OH}}{{\rm{H}}^ - }} \right]}}{{\left| {{\rm{N}}{{\rm{H}}_3}} \right|}}\\1.8 \cdot {10^{ - 5}} = \frac{{x \cdot \left( {1 \cdot {{10}^{ - 7}} + x} \right)}}{{1 \cdot {{10}^{ - 6}} - x}}\\1.8 \cdot {10^{ - 11}} - 1.8 \cdot {10^{ - 5}}x = 1 \cdot {10^{ - 7}}x + {x^2}\\0 = {x^2} + 1.81 \cdot {10^{ - 5}}x - 1.8 \cdot {10^{ - 11}}\\x = 0.95 \cdot {10^{ - 6}}\\\left[ {{{\rm{H}}_3}{{\rm{O}}^ + }} \right] = 1 \cdot {10^{ - 7}} + 0.95 \cdot {10^{ - 6}} = 1.05 \cdot {10^{ - 6}}\end{array}\)

06

To find the concentration on \(\left[ {{\bf{N}}{{\bf{H}}_{\bf{3}}}} \right]{\rm{ }}{\bf{varies}}{\rm{ }}{\bf{1 \times 1}}{{\bf{0}}^{{\bf{ - 5}}}}{\bf{M}}\)

\(\left[ {N{H_3}} \right] = 1 \times 1{0^{ - 5}}M\)

\(N{H_3}(aq) \to \)

\(\)\(N{H_4}^ + (aq) + \)

\(OH(aq)\)

Initial (M)

\({1.10^{ - 5}}\)

\(0\)

\({1.10^{ - 7}}\)

Change (M)

-X

+X

+X

Equilibrium (M)

\({1.10^{ - 5}} - X\)

X

\({1.10^{ - 7}} + X\)

\(\begin{array}{l}{K_{\dot b}} = \frac{{\left[ {{\rm{NH}}_1^ + } \right] \cdot [{\rm{OH}} - ]}}{{\left. {\mid {\rm{N}}{{\rm{H}}_3}} \right]}}\\1.8 \cdot {10^{ - 5}} = \frac{{x \cdot \left( {1 \cdot {{10}^{ - 7}} + x} \right)}}{{1 \cdot {{10}^{ - 5}} - x}}\\1.8 \cdot {10^{ - 10}} - 1.8 \cdot {10^{ - 5}}x = 1 \cdot {10^{ - 7}}x + {x^2}\\0 = {x^2} + 1.81 \cdot {10^{ - 5}}x - 1.8 \cdot {10^{ - 10}}\\x = 7.13 \cdot {10^{ - 6}}\\\left[ {{{\rm{H}}_3}{{\rm{O}}^ + }} \right] = 1 \cdot {10^{ - 7}} + 7.13 \cdot {10^{ - 6}} = 7.23 \cdot {10^{ - 6}}\end{array}\)

07

To find the concentration on \(\left[ {{\bf{N}}{{\bf{H}}_{\bf{3}}}} \right]{\bf{ varies 1 \times 1}}{{\bf{0}}^{{\bf{ - 4}}}}{\bf{M}}\)

\(\left[ {N{H_3}} \right] = 1 \times 1{0^{ - 4}}M\)

\(N{H_3}(aq) \to \)

\(\)\(N{H_4}^ + (aq) + \)

\(OH(aq)\)

Initial (M)

\({1.10^{ - 4}}\)

\(0\)

\({1.10^{ - 7}}\)

Change (M)

-X

+X

+X

Equilibrium (M)

\({1.10^{ - 4}} - X\)

X

\({1.10^{ - 7}} + X\)

\(\begin{array}{l}{K_b} = \frac{{\left[ {NH_1^ + } \right] \cdot \left[ {O{H^ - }} \right]}}{{\left[ {{\rm{N}}{{\rm{H}}_3}} \right]}}\\1.8 \cdot {10^{ - 5}} = \frac{{x \cdot \left( {1 \cdot {{10}^{ - 7}} + x} \right)}}{{1 \cdot {{10}^{ - 4}} - x}}\\1.8 \cdot {10^{ - 9}} - 1.8 \cdot {10^{ - 5}}x = 1 \cdot {10^{ - 7}}x + {x^2}\\0 = {x^2} + 1.81 \cdot {10^{ - 5}}x - 1.8 \cdot {10^{ - 9}}\\x = 3.43 \cdot {10^{ - 5}}\\\left[ {{H_3}{O^ + }} \right] = 1 \cdot {10^{ - 7}} + 3.43 \cdot {10^{ - 5}} = 3.44 \cdot {10^{ - 5}}\end{array}\)

08

To find the concentration on \(\left[ {{\bf{N}}{{\bf{H}}_{\bf{3}}}} \right]{\bf{ varies 1 \times 1}}{{\bf{0}}^{{\bf{ - 3}}}}{\bf{M}}\)

\(\left[ {N{H_3}} \right] = 1 \times 1{0^{ - 3}}M\)

\(N{H_3}(aq) \to \)

\(\)\(N{H_4}^ + (aq) + \)

\(OH(aq)\)

Initial (M)

\({1.10^{ - 3}}\)

\(0\)

\({1.10^{ - 7}}\)

Change (M)

-X

+X

+X

Equilibrium (M)

\({1.10^{ - 3}} - X\)

X

\({1.10^{ - 7}} + X\)

\(\begin{array}{l}{K_b} = \frac{{\left[ {NH_1^ + } \right] \cdot \left[ {O{H^ - }} \right]}}{{\left[ {N{H_3}} \right]}}\\1.8 \cdot {10^{ - 5}} = \frac{{x \cdot \left( {1 \cdot {{10}^{ - 7}} + x} \right)}}{{1 \cdot {{10}^{ - 3}} - x}}\\1.8 \cdot {10^{ - 8}} - 1.8 \cdot {10^{ - 5}}x = 1 \cdot {10^{ - 7}}x + {x^2}\\0 = {x^2} + 1.81 \cdot {10^{ - 5}}x - 1.8 \cdot {10^{ - 8}}\\x = 1.25 \cdot {10^{ - 4}}\\\left[ {{{\rm{H}}_3}{{\rm{O}}^ + }} \right] = 1 \cdot {10^{ - 7}} + 1.25 \cdot {10^{ - 4}} = 1.25 \cdot {10^{ - 4}}\end{array}\)

09

To find the concentration on \(\left[ {{\bf{N}}{{\bf{H}}_{\bf{3}}}} \right]{\bf{ varies 1 \times 1}}{{\bf{0}}^{{\bf{ - 2}}}}{\bf{M}}\)

\(\left[ {N{H_3}} \right] = 1 \times 1{0^{ - 2}}M\)

\(N{H_3}(aq) \to \)

\(\)\(N{H_4}^ + (aq) + \)

\(OH(aq)\)

Initial (M)

\({1.10^{ - 2}}\)

\(0\)

\({1.10^{ - 7}}\)

Change (M)

-X

+X

+X

Equilibrium (M)

\({1.10^{ - 2}} - X\)

X

\({1.10^{ - 7}} + X\)

\(\begin{array}{l}{K_b} = \frac{{\left[ {NH_4^ + } \right] \cdot \left[ {{\rm{O}}{{\rm{H}}^ - }} \right]}}{{\left. {\mid {\rm{N}}{{\rm{H}}_3}} \right]}}\\1.8 \cdot {10^{ - 5}} = \frac{{x \cdot \left( {1 \cdot {{10}^{ - 7}} + x} \right)}}{{1 \cdot {{10}^{ - 2}} - x}}\\1.8 \cdot {10^{ - 7}} - 1.8 \cdot {10^{ - 5}}x = 1 \cdot {10^{ - 7}}x + {x^2}\\0 = {x^2} + 1.81 \cdot {10^{ - 5}}x - 1.8 \cdot {10^{ - 7}}\\x = 4.15 \cdot {10^{ - 4}}\\\left[ {{{\rm{H}}_3}{{\rm{O}}^ + }} \right] = 1 \cdot {10^{ - 7}} + 4.15 \cdot {10^{ - 4}} = 4.15 \cdot {10^{ - 4}}\end{array}\)

10

Step 10:

\(\begin{array}{l}{\rm{ A curve for a series of solutions of N}}{{\rm{H}}_3}{\rm{ ( vertical axis }}\left[ {{\rm{O}}{{\rm{H}}^ - }} \right]{\rm{and horizontal axs }}\\\left[ {{\rm{N}}{{\rm{H}}_3}} \right]{\rm{ (ionized and nonionized)) }}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the conjugate acid of each of the following? What is the conjugate base of each?

\({\rm{a) }}{{\rm{H}}_2}S\)

\({\rm{b) }}{{\rm{H}}_2}{\rm{PO}}_4^ - \)

\({\rm{c) P}}{{\rm{H}}_3}\)

\({\rm{d) }}H{S^ - }\)

\({\rm{(e)HSO}}\;_3^ - \)

\({\rm{\;(f)\;}}{{\rm{H}}_3}{{\rm{O}}_2}^ + \)

\({\rm{\;(g)\;}}{{\rm{H}}_4}{{\rm{N}}_2}\)

\({\rm{\;(h)\;C}}{{\rm{H}}_3}{\rm{OH}}\)

Household ammonia is a solution of the weak base\(N{H_3}\) in water. List, in order of descending concentration, all of the ionic and molecular species present in a 1-M aqueous solution of this base.

Both \(HF and HCN\)ionize in water to a limited extent. Which of the conjugate bases \(F - or CN - \), is the stronger base? See Table 14.3.

Explain why equilibrium calculations are not necessary to determine ionic concentrations in solutions of certain strong electrolytes such as. \(NaOH\;and\;HCl.\;\) Under what conditions are equilibrium calculations necessary as part of the determination of the concentrations of all ions of some other strong electrolytes in solution?

From the equilibrium concentrations given, calculate for each of the weak acids and for each of the weak bases.

\(\begin{aligned}(a)C{H_3}C{O_2}H:\left( {{H_3}{O^ + }} \right) = 1.34 \times 1{0^{ - 3}}M;\left( {C{H_3}CO_2^ - } \right) = 1.34 \times 1{0^{ - 3}}M;\left( {C{H_3}C{O_2}H} \right) = 9.866 \times 1{0^{ - 2}}M;\\(b)Cl{O^ - }:\left( {O{H^ - }} \right) = 4.0 \times 1{0^{ - 4}}M;(HClO) = 2.38 \times 1{0^{ - 5}}M;\left( {Cl{O^ - }} \right) = 0.273M;\\(c)HC{O_2}H:\left( {HC{O_2}H} \right) = 0.524M;\left( {{H_3}{O^ + }} \right) = 9.8 \times 1{0^{ - 3}}M\left( {HCO_2^ - } \right) = 9.8 \times 1{0^{ - 3}}M;\\(d){C_6}{H_5}NH_3^ + :\left( {{C_6}{H_5}NH_3^ + } \right) = 0.233M;\left( {{C_6}{H_5}N{H_2}} \right) = 2.3 \times 1{0^{ - 3}}M;\left( {{H_3}{O^ + }} \right) = 2.3 \times 1{0^{ - 3}}M\end{aligned}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free