Is the self ionization of water endothermic or exothermic? The ionization constant for water \(\left( {{K_W}} \right)\)is 2.9* \({10^{ - 14}}\)at \({40^ \circ }{\rm{C}}\)and 9.3 x \({10^{ - 14}}\)at \({60^ \circ }{\rm{C}}\)

Short Answer

Expert verified

Self ionization of water is endothermic process.

Step by step solution

01

Define endothermic or exothermic

In endothermic process the system absorbs energy (heat) from the surroundings whereas in exothermic process the system releases energy to the surrounding.

02

Find self-ionization of water endothermic or exothermic

Self ionization of water is endothermic process because its ionization constant \(\left( {{K_W}} \right)\) is increasing at higher temperatures. Endothermic processes are ones that take up the heat from the surroundings so higher temperature pushes the equilibrium towards the products. Hence constant is greater.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the concentration of each species present in a \(0.010M\) solution of phthalic acid, \({C_6}{H_4}{\left( {C{O_2}H} \right)_2}\).

\(\begin{array}{*{20}{c}}{{C_6}{H_4}{{\left( {C{O_2}H} \right)}_2}(aq) + {H_2}O(l) \rightleftharpoons {H_3}{O^ + }(aq) + {C_6}{H_4}\left( {C{O_2}H} \right){{\left( {C{O_2}} \right)}^ - }(aq)}&{{K_a} = 1.1 \times 1{0^{ - 3}}} \\ {{C_6}{H_4}\left( {C{O_2}H} \right)\left( {C{O_2}} \right)(aq) + {H_2}O(l) \rightleftharpoons {H_3}{O^ + }(aq) + {C_6}{H_4}{{\left( {C{O_2}} \right)}_2}^{2 - }(aq)}&{{K_a} = 3.9 \times 1{0^{ - 6}}} \end{array}\)

Nicotine, \({C_{10}}{H_{14}}\;{N_2}\), is a base that will accept two protons \(\left( {{K_1} = 7 \times 1{0^{ - 7}},{K_2} = 1.4 \times 1{0^{ - 11}}} \right)\). What is the concentration of each species present in a \(0.050 - M\) solution of nicotine?

What do we represent when we write

\(C{H_3}C{O_2}H(aq) + {H_2}O(l) \rightleftharpoons{H_3}{O^ + }(aq) + C{H_3}CO_2^ - (aq)?\)

From the equilibrium concentrations given, calculate \({K_a}\)for each of the weak acids and \({K_b}\)for each of the weak bases.

\(\begin{aligned}(a)N{H_3}:\left( {O{H^ - }} \right) = 3.1 \times 1{0^{ - 3}}M\left( {NH_4^ + } \right) = 3.1 \times 1{0^{ - 3}}M;\left( {N{H_3}} \right) = 0.533M;\\(b)HN{O_2}:\left( {{H_3}{O^ + }} \right) = 0.011M;\left( {NO_2^ - } \right) = 0.0438M;\left( {HN{O_2}} \right) = 1.07M;\\(c){\left( {C{H_3}} \right)_3}\;N:\left( {{{\left( {C{H_3}} \right)}_3}\;N} \right) = 0.25M;\left( {{{\left( {C{H_3}} \right)}_3}N{H^ + }} \right) = 4.3 \times 1{0^{ - 3}}M;\left( {O{H^ - }} \right) = 4.3 \times 1{0^{ - 3}}M;\\(d)N{H_4} + :\left( {N{H_4} + } \right) = 0.100M;\left( {N{H_3}} \right) = 7.5 \times 1{0^{ - 6}}M;\left( {{H_3}{O^ + }} \right) = 7.5 \times 1{0^{ - 6}}M\end{aligned}\)

\(\begin{aligned}\left( {N{H_3}} \right) = 7.5 \times 1{0^{ - 6}}M\\\left( {{H_3}{O^ + }} \right) = 7.5 \times 1{0^{ - 6}}M\end{aligned}\)

Identify and label the Brønsted-Lowry acid, its conjugate base, the Brønsted-Lowry base, and its conjugate acid in each of the following equations:

\({\rm{\;(a)\;NO}}_2^ - + {{\rm{H}}_2}{\rm{O}} \to {\rm{HN}}{{\rm{O}}_2} + {\rm{O}}{{\rm{H}}^ - }\).

\({\rm{\;(b)\;HBr}} + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_3}{{\rm{O}}^ + } + {\rm{B}}{{\rm{r}}^ - }\)

\({\rm{\;(c)\;H}}{{\rm{S}}^ - } + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_2}{\rm{S}} + {\rm{O}}{{\rm{H}}^ - }\)

\({\rm{\;(d)\;}}{{\rm{H}}_2}{\rm{PO}}_4^ - + {\rm{O}}{{\rm{H}}^ - } \to {\rm{HP}}{{\rm{O}}_4}^{2 - } + {{\rm{H}}_2}{\rm{O}}\)

\({\rm{\;(e)\;}}{{\rm{H}}_2}{\rm{PO}}_4^ - + {\rm{HCl}} \to {{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4} + {\rm{C}}{{\rm{l}}^ - }\)

\({\rm{\;(f)\;}}{\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} \to {\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }}\)

\({\rm{\;(g)\;C}}{{\rm{H}}_3}{\rm{OH}} + {{\rm{H}}^ - } \to {\rm{C}}{{\rm{H}}_3}{{\rm{O}}^ - } + {{\rm{H}}_2}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free