The ionization constant for water\(({K_w})\) is\(2.9 \times 1{0^{ - 14}}\;at\;4{0^o}C\). Calculate\(\left( {{H_3}{O^ + }} \right),\left( {O{H^ - }} \right),pH,\;and\;pOH\) for pure water at \(4{0^o}C\).

Short Answer

Expert verified

The value of \(\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right)\) for pure water at\({40^ \circ }C\)is\(c\left( {{H_3}{O^ + }} \right) = 1.7 \cdot {10^{ - 7}}\frac{{{\rm{mol}}}}{L}\).

The value of \(\left( {{\rm{O}}{{\rm{H}}^ - }} \right)\)for pure water at\({40^ \circ }C\)is\(c\left( {O{H^ - }} \right) = 1.7 \cdot {10^{ - 7}}\frac{{{\rm{mol}}}}{{\rm{L}}}\).

The \(pH\) for pure water at\({40^ \circ }C\)is\(pH = 6.8.\)

The \(pOH\)for pure water at\({40^ \circ }C\)is\(pOH = 6.8.\)

Step by step solution

01

Define the formula for\(pH\)and\(pOH\):

The formula for\(pH\)is\(pH = - \log \frac{{c\left( {{H_3}{O^ + }} \right)}}{{mol{L^{ - 1}}}}\).

The formula for\(pOH\)is\(pOH = - \log \frac{{c\left( {O{H^ - }} \right)}}{{mol{L^{ - 1}}}}\).

02

Use the formula to find the required solution:

Let, the ionization constant for water\(({K_w})\) is\(2.9 \times {10^{ - 14}}{\rm{\;at\;}}{40^ \circ }{\rm{C}}\).

Hence, the equation of water ionization is,

\({{\rm{H}}_2}{\rm{O}}(l) + {{\rm{H}}_2}{\rm{O}}(l) \to {{\rm{H}}_3}{{\rm{O}}^ + }(aq) + {\rm{O}}{{\rm{H}}^ - }(aq)\)

Thus, the ionization constant is,

\({K_w} = c\left( {{H_3}{O^ + }} \right) \cdot c\left( {O{H^ - }} \right)\)

Since, the concentration of\({{\rm{H}}_3}{{\rm{O}}^ + }{\rm{and\;O}}{{\rm{H}}^ - }\)are equal, it can be written as,

\(c\left( {{H_3}{O^ + }} \right) = c\left( {O{H^ - }} \right) = c\)

Calculate the concentration,

\(\begin{aligned}{2.9 \cdot {{10}^{ - 14}} = {c^2}}\\{c = \sqrt {2.9 \cdot {{10}^{ - 14}}} }\\{c = 1.7 \cdot {{10}^{ - 7}}\frac{{{\rm{mol}}}}{{\rm{L}}}}\end{aligned}\)

Therefore,

\(\begin{aligned}{c\left( {{H_3}{O^ + }} \right) = 1.7 \cdot {{10}^{ - 7}}\frac{{{\rm{mol}}}}{L}}\\{c\left( {O{H^ - }} \right) = 1.7 \cdot {{10}^{ - 7}}\frac{{{\rm{mol}}}}{L}}\end{aligned}\)

Find the \(pH\)and \(pOH\)of pure water,

Use the formula,

\(pH = - \log \frac{{c\left( {{H_3}{O^ + }} \right)}}{{mol{L^{ - 1}}}}\)

Substitute \(c\left( {{H_3}{O^ + }} \right) = 1.7 \cdot {10^{ - 7}}\frac{{{\rm{mol}}}}{L}\)

\(\begin{aligned}{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,pH = - \log \frac{{1.7 \cdot {{10}^{ - 7}}mol{L^{ - 1}}}}{{mol{L^{ - 1}}}}}\\{pH = 6.8}\end{aligned}\)

Solve for\(pOH\),

\(pOH = - \log \frac{{c\left( {O{H^ - }} \right)}}{{mol{L^{ - 1}}}}\)

Substitute, \(c\left( {O{H^ - }} \right) = 1.7 \cdot {10^{ - 7}}\frac{{{\rm{mol}}}}{L}\)

\(pOH = - \log \frac{{1.7 \cdot {{10}^{ - 7}}mo{l^{ - 1}}}}{{mol{L^{ - 1}}}}\)

\(pOH = 6.8\)

Thus, the value of\(\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right),\left( {{\rm{O}}{{\rm{H}}^ - }} \right),{\rm{pH}},{\rm{\;and\;pOH}}\) are,

\(c\left( {{H_3}{O^ + }} \right) = 1.7 \cdot {10^{ - 7}}\frac{{{\rm{mol}}}}{L}\)

\(c\left( {O{H^ - }} \right) = 1.7 \cdot {10^{ - 7}}\frac{{{\rm{mol}}}}{L}\)

\(\begin{aligned}pH = 6.8,\\pOH = 6.8\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the concentration of each species present in a \(0.010M\) solution of phthalic acid, \({C_6}{H_4}{\left( {C{O_2}H} \right)_2}\).

\(\begin{array}{*{20}{c}}{{C_6}{H_4}{{\left( {C{O_2}H} \right)}_2}(aq) + {H_2}O(l) \rightleftharpoons {H_3}{O^ + }(aq) + {C_6}{H_4}\left( {C{O_2}H} \right){{\left( {C{O_2}} \right)}^ - }(aq)}&{{K_a} = 1.1 \times 1{0^{ - 3}}} \\ {{C_6}{H_4}\left( {C{O_2}H} \right)\left( {C{O_2}} \right)(aq) + {H_2}O(l) \rightleftharpoons {H_3}{O^ + }(aq) + {C_6}{H_4}{{\left( {C{O_2}} \right)}_2}^{2 - }(aq)}&{{K_a} = 3.9 \times 1{0^{ - 6}}} \end{array}\)

Calculate the \(pH\)and the\(pOH\) of each of the following solutions at \(2{5^o}C\) for which the substances ionize completely:

(a)\(0.000259M HCl{O_4}\)

(b)\(0.21M NaOH\)

(c)\(0.000071M Ba{(OH)_2}\)

(d) \(2.5M KOH\)

Which of the following will increase the percentage of \({\rm{N}}{{\rm{H}}_3}\)that is converted to the ammonium ion in water (Hint: Use Le Châtelier's principle)?

(a) Addition of \(NaOH\)

(b) Addition of \(HCl\)

(c) Addition of \(N{H_4}Cl\)

The \(pH\) of a \(0.15 - M\) solution of \(HS{O_4}\) − is \(1.43. \)Determine \({K_a}\)for \( HS{O_4}\) − from these data.

Use this list of important industrial compounds (and Figure 14.8) to answer the following questions regarding: \(CaO,Ca{(OH)_2},NaOH,C{H_3}C{O_2}H,{H_2}C{O_3},HF,HN{O_2},{H_3}P{O_4},HCl,HN{O_3},{H_2}S{O_4},N{H_3}\) (a) Identify the strong Brønsted-Lowry acids and strong Brønsted-Lowry bases. (b) List those compounds in (a) that can behave as Brønsted-Lowry acids with strengths lying between those of \({H_3}{O^ + }and\;{H_2}O\). (c) List those compounds in (a) that can behave as Brønsted-Lowry bases with strengths lying between those

\({H_2}O\;and\;O{H^ - }\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free