The ionization constant for water\(\left( {{K_w}} \right)\;is\;9.311 \times 1{0^{ - 14}}\;at\;6{0^o}C\). Calculate \(\left( {{H_3}{O^ + }} \right),\left( {O{H^ - }} \right),pH,\;and\;pOH\)for pure water at \(6{0^o}C\).

Short Answer

Expert verified

The value of \(\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right)\) for pure water at\({60^ \circ }C\)is\(c\left( {{H_3}{O^ + }} \right) = 3.05 \cdot {10^{ - 7}}\frac{{mol}}{L}\).

The value of \(\left( {{\rm{O}}{{\rm{H}}^ - }} \right)\)for pure water at\({60^ \circ }C\)is\(c\left( {O{H^ - }} \right) = 3.05 \cdot {10^{ - 7}}\frac{{mol}}{L}\).

The \(pH\) for pure water at\({60^ \circ }C\)is\(pH = 6.51\)

The \(pOH\)for pure water at\({60^ \circ }C\)is\(pOH = 6.51\)

Step by step solution

01

Define the formula for\(pH\)and\(pOH\):

The formula for\(pH\)is\(pH = - \log \frac{{c\left( {{H_3}{O^ + }} \right)}}{{mol{L^{ - 1}}}}\).

The formula for\(pOH\)is\(pOH = - \log \frac{{c\left( {O{H^ - }} \right)}}{{mol{L^{ - 1}}}}\).

02

Obtain the solution by using the formula:

Let the ionization constant for water\(\left( {{K_w}} \right){\rm{\;is\;}}9.311 \times {10^{ - 14}}{\rm{\;at\;}}{60^ \circ }{\rm{C}}\).

Thus, the equation of water ionization is,

\({{\rm{H}}_2}{\rm{O}}(l) + {{\rm{H}}_2}{\rm{O}}(l) \to {{\rm{H}}_3}{{\rm{O}}^ + }(aq) + {\rm{O}}{{\rm{H}}^ - }(aq)\)

Hence, the ionization constant is,

\({K_w} = c\left( {{H_3}{O^ + }} \right) \cdot c\left( {O{H^ - }} \right)\)

Since, the concentration of\({{\rm{H}}_3}{{\rm{O}}^ + }{\rm{and\;O}}{{\rm{H}}^ - }\)are equal, it can be written as,

\(c\left( {{H_3}{O^ + }} \right) = c\left( {O{H^ - }} \right) = c\)

Find the concentration,

\(\begin{aligned}{9.311 \cdot {{10}^{ - 14}} = {c^2}}\\{c = \sqrt {9.311 \cdot {{10}^{ - 14}}} }\\{c = 3.05 \cdot {{10}^{ - 7}}\frac{{{\rm{mol}}}}{{\rm{L}}}}\end{aligned}\)

Therefore,

\(\begin{aligned}{c\left( {{H_3}{O^ + }} \right) = 3.05 \cdot {{10}^{ - 7}}\frac{{mol}}{L}}\\{c\left( {O{H^ - }} \right) = 3.05 \cdot {{10}^{ - 7}}\frac{{mol}}{L}}\end{aligned}\)

03

Calculate the value of \(pH\)and \(pOH\):

Use the formula,

\(pH = - \log \frac{{c\left( {{H_3}{O^ + }} \right)}}{{mol{L^{ - 1}}}}\)

Substitute, \(c\left( {{H_3}{O^ + }} \right) = 3.05 \cdot {10^{ - 7}}\frac{{mol}}{L}\)

\(\begin{aligned}{pH = - \log \frac{{3.05 \cdot {{10}^{ - 7}}{\rm{mol}}{{\rm{L}}^{ - 1}}}}{{{\rm{mol}}{L^{ - 1}}}}}\\{pH = 6.51}\end{aligned}\)

Calculate \(pOH,\)

\(pOH = - \log \frac{{c\left( {O{H^ - }} \right)}}{{mol{L^{ - 1}}}}\)

Substitute, \(c\left( {O{H^ - }} \right) = 3.05 \cdot {10^{ - 7}}\frac{{mol}}{L}\)

\(pOH = - \log \frac{{3.05 \cdot {{10}^{ - 7}}mol{L^{ - 1}}}}{{mol{L^{ - 1}}}}\)

\(pOH = 6.51\)

Therefore, the value of\(pH\)is\(6.51\)and the value of\(pOH\)is \(6.51.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

We can ignore the contribution of water to the concentration of\(O{H^ - }\)in a solution of the following bases:\(0.0784 M {C_6}{H_5}N{H_2}\), a weak base\(0.11M{\left( {C{H_3}} \right)_3}\;N\), a weak base but not the contribution of water to the concentration of\({H_3}{O^ + }?\)

Which of the following will increase the percentage of \({\rm{N}}{{\rm{H}}_3}\)that is converted to the ammonium ion in water (Hint: Use Le Châtelier's principle)?

(a) Addition of \(NaOH\)

(b) Addition of \(HCl\)

(c) Addition of \(N{H_4}Cl\)

A buffer solution is prepared from equal volumes of \({\bf{0}}.{\bf{200}}{\rm{ }}{\bf{M}}\) acetic acid and \({\bf{0}}.{\bf{600}}{\rm{ }}{\bf{M}}\) sodium acetate. Use \({\bf{1}}.{\bf{80}}{\rm{ }} \times {\rm{ }}{\bf{1}}{{\bf{0}}^{ - {\bf{5}}}}\) as Ka for acetic acid.

(a) What is the pH of the solution?

(b) Is the solution acidic or basic?

(c) What is the pH of a solution that results when \({\bf{3}}.{\bf{00}}{\rm{ }}{\bf{mL}}\) of \({\bf{0}}.{\bf{034}}{\rm{ }}{\bf{M}}{\rm{ }}{\bf{HCl}}\) is added to \({\bf{0}}.{\bf{200}}{\rm{ }}{\bf{L}}\) of the original buffer?

Calculate the \(pH\)and the\(pOH\) of each of the following solutions at \(2{5^o}C\) for which the substances ionize completely:

(a)\(0.000259M HCl{O_4}\)

(b)\(0.21M NaOH\)

(c)\(0.000071M Ba{(OH)_2}\)

(d) \(2.5M KOH\)

Identify and label the Brønsted-Lowry acid, its conjugate base, the Brønsted-Lowry base, and its conjugate acid in each of the following equations:

\({\rm{\;(a)\;NO}}_2^ - + {{\rm{H}}_2}{\rm{O}} \to {\rm{HN}}{{\rm{O}}_2} + {\rm{O}}{{\rm{H}}^ - }\).

\({\rm{\;(b)\;HBr}} + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_3}{{\rm{O}}^ + } + {\rm{B}}{{\rm{r}}^ - }\)

\({\rm{\;(c)\;H}}{{\rm{S}}^ - } + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_2}{\rm{S}} + {\rm{O}}{{\rm{H}}^ - }\)

\({\rm{\;(d)\;}}{{\rm{H}}_2}{\rm{PO}}_4^ - + {\rm{O}}{{\rm{H}}^ - } \to {\rm{HP}}{{\rm{O}}_4}^{2 - } + {{\rm{H}}_2}{\rm{O}}\)

\({\rm{\;(e)\;}}{{\rm{H}}_2}{\rm{PO}}_4^ - + {\rm{HCl}} \to {{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4} + {\rm{C}}{{\rm{l}}^ - }\)

\({\rm{\;(f)\;}}{\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} \to {\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }}\)

\({\rm{\;(g)\;C}}{{\rm{H}}_3}{\rm{OH}} + {{\rm{H}}^ - } \to {\rm{C}}{{\rm{H}}_3}{{\rm{O}}^ - } + {{\rm{H}}_2}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free