Calculate the \(pH\)and the\(pOH\) of each of the following solutions at \(2{5^o}C\) for which the substances ionize completely:

(a)\(0.000259M HCl{O_4}\)

(b)\(0.21M NaOH\)

(c)\(0.000071M Ba{(OH)_2}\)

(d) \(2.5M KOH\)

Short Answer

Expert verified
  1. The\(pH\)and the\(pOH\)of a solution \(HCl{O_4}\)is\(pH = 3.6\)and\(pOH = 10.4\).
  2. The \(pH\)and the\(pOH\)of a solution\(NaOH\)is\(pH = 13.32\)and\(pOH = 0.68\).
  3. The \(pH\)and the\(pOH\)of a solution \(Ba{(OH)_2}\)is\(pH = 10.15\)and \(pOH = 3.85\).
  4. The \(pH\)and the\(pOH\)of a solution\(KOH\)is\(pH = 14.4\)and\(pOH = - 0.4\).

Step by step solution

01

Define the formula for\(pH\)and\(pOH\):

The formula to find\(pH\)is,\(pH = - \log \left( {\frac{{c\left( {{H^ + }} \right)}}{{mol{L^{ - 1}}}}} \right)\)

The formula to find\(pOH\)is,\(pOH = - \log \left( {\frac{{c\left( {O{H^ - }} \right)}}{{mol{L^{ - 1}}}}} \right)\)

The equation\(pH + pOH = p{K_w}\)can be used to find both\(pH\)and\(pOH.\)

02

(a) Find \(pH\) and \(pOH\) of the solution \(HCl{O_4}\):

Consider the reaction of ionization of \(HCl{O_4}\),

\({\rm{HCl}}{{\rm{O}}_4}(aq) \to {{\rm{H}}^ + }(aq) + {\rm{ClO}}_4^ - (aq)\)

Hence, the reaction is complete, it can be written as,

\(c\left( {HCl{O_4}} \right) = c\left( {{H^ + }} \right)\)

Since, it is given that, the concentration of \(HCl{O_4}\)is\(0.000259\,mol{L^{ - 1}}\)

\(c\left( {{H^ + }} \right) = 0.000259\frac{{mol}}{L}\)

Calculate\(pH\)of a solution,

\(pH = - \log \left( {\frac{{c\left( {{H^ + }} \right)}}{{mol{L^{ - 1}}}}} \right)\)

Substitute \(c\left( {{H^ + }} \right) = 0.000259\frac{{mol}}{L}\)

\(\begin{aligned}{pH = - \log \left( {\frac{{0.000259mol{L^{ - 1}}}}{{mol{L^{ - 1}}}}} \right)}\\{pH = 3.6}\end{aligned}\)

Use the equation to find\(pOH,\)

\(pH + pOH = p{K_w}\)

Hence,\(p{K_w} = - \log {K_w}\)

Since, the ionization constant of water\(({K_w}) = 1.0 \times {10^{ - 14}}\)

\(\begin{aligned}{p{K_w} = - \log \left( {1.0 \cdot {{10}^{ - 14}}} \right)}\\{p{K_w} = 14}\end{aligned}\)

Thus,

\(\begin{aligned}{pOH = 14 - 3.6}\\{pOH = 10.4}\end{aligned}\)

Therefore, value of \(pH\)and \(pOH\)of a solution \(HCl{O_4}\)is\(pH = 3.6\)and\(pOH = 10.4\).

03

(b) Calculate the value of \(pH\) and \(pOH\) of \(NaOH\):

Consider the reaction of ionization of\(NaOH\),

\(NaOH(aq) \to N{a^ + }(aq) + O{H^ - }(aq)\)

Since, the reaction is complete, it can be written as

\(c(NaOH) = c\left( {O{H^ - }} \right)\)

Hence, the concentration of\(NaOH\)is given as\(c(NaOH) = 0.21\frac{{mol}}{L}\)

Thus,

\(c\left( {O{H^ - }} \right) = 0.21\frac{{mol}}{L}\)

Calculate the value of\(pOH\),

\(pOH = - \log \left( {\frac{{c\left( {O{H^ - }} \right)}}{{mol{L^{ - 1}}}}} \right)\)

Substitute \(c\left( {O{H^ - }} \right) = 0.21\frac{{mol}}{L}\)

\(\begin{aligned}{pOH = - \log \left( {\frac{{0.21{\rm{mol}}{{\rm{L}}^{ - 1}}}}{{mol{L^{ - 1}}}}} \right)}\\{pOH = 0.68}\end{aligned}\)

Find the value of\(pH\),

\(\begin{aligned}{pH + pOH = p{K_w}}\\{pH = 14 - 0.68}\\{pH = 13.32}\end{aligned}\)

Therefore, the value of \(pH\)and \(pOH\)of a solution\(NaOH\)is\(pH = 13.32\)and\(pOH = 0.68\).

04

(c) Obtain the value of\(pH\)and\(pOH\)of the solution\(Ba{(OH)_2}\):

Consider the reaction of ionization of\(Ba{(OH)_2}\)

\({\rm{Ba}}{({\rm{OH}})_2}(aq) \to {\rm{B}}{{\rm{a}}^{2 + }}(aq) + 2{\rm{O}}{{\rm{H}}^ - }(aq)\)

Since, the reaction is complete, it can be written as

\(\begin{aligned}{c\left( {Ba{{(OH)}_2}} \right):c\left( {O{H^ - }} \right) = 1:2}\\{2c\left( {Ba{{(OH)}_2}} \right) = c\left( {O{H^ - }} \right)}\end{aligned}\)

Hence, the concentration of\(Ba{(OH)_2}\)is given as\(0.000071\frac{{{\rm{mol}}}}{L}\).

Thus,

\(\begin{aligned}{c\left( {O{H^ - }} \right) = 2 \cdot 0.000071\frac{{{\rm{mol}}}}{{\rm{L}}}}\\{c\left( {O{H^ - }} \right) = 0.000142\frac{{{\rm{mol}}}}{{\rm{L}}}}\end{aligned}\)

Calculate\(pOH\)of a solution,

\(pOH = - \log \left( {\frac{{c\left( {O{H^ - }} \right)}}{{mol{L^{ - 1}}}}} \right)\)

Substitute \(c\left( {O{H^ - }} \right) = 0.000142\frac{{{\rm{mol}}}}{{\rm{L}}}\)

\(\begin{aligned}{pOH = - \log \left( {\frac{{0.000142mol{L^{ - 1}}}}{{mol{L^{ - 1}}}}} \right)}\\{pOH = 3.85}\end{aligned}\)

Find \(pH\)of a solution,

\(\begin{aligned}{pH + pOH = p{K_w}}\\{pH = 14 - 3.85}\\{pH = 10.15}\end{aligned}\)

Therefore, the value of \(pH\)and the\(pOH\)of a solution \(Ba{(OH)_2}\)is\(pH = 10.15\)and \(pOH = 3.85\).

05

(d) Determine the value of\(pH\)and\(pOH\)of the solution\(KOH\):

Consider the reaction of ionization of\(KOH\),

\(KOH(aq) \to {K^ + }(aq) + O{H^ - }(aq)\)

Since, the reaction is complete, we can write as

\(c(KOH) = c\left( {O{H^ - }} \right)\)

Hence, the concentration of\(KOH\)is given as\(2.5\frac{{{\rm{mol}}}}{{\rm{L}}}\).

Thus,

\(c\left( {O{H^ - }} \right) = 2.5\frac{{mol}}{L}\)

Calculate the value of\(pOH\),

\(pOH = - \log \left( {\frac{{c\left( {O{H^ - }} \right)}}{{mol{L^{ - 1}}}}} \right)\)

Substitute \(c\left( {O{H^ - }} \right) = 2.5\frac{{mol}}{L}\)

\(\begin{aligned}{pOH = - \log \left( {\frac{{2.5{\rm{mol}}{{\rm{L}}^{ - 1}}}}{{mol{L^{ - 1}}}}} \right)}\\{pOH = - 0.4}\end{aligned}\)

Find the value of\(pH\)of the solution,

\(\begin{aligned}{pH + pOH = p{K_w}}\\{pH = 14 + 0.4}\\{pH = 14.4}\end{aligned}\)

Therefore, the value of \(pH\)and \(pOH\)of a solution\(KOH\)is\(pH = 14.4\)and\(pOH = - 0.4\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the effect on the concentration of acetic acid, hydronium ion, and acetate ion when the following are added to an acidic buffer solution of equal concentrations of acetic acid and sodium acetate:

(a)\(HCl\)

(b)\(KC{H_3}C{O_2}\)

(c)\(NaCl\)

(d)\(KOH\)

(e)\(C{H_3}C{O_2}H\)

Determine \({K_a}\)for hydrogen sulfate ion, \(HS{O_4}^ - .\)In a \(0.10 - M\)solution the acid is \(29\% \)ionized.

14.2 What is the hydronium ion concentration in an aqueous solution with a hydroxide ion concentration of 0.001 M at 25̊C?

Explain why a sample of pure water at \({40^ \circ }{\rm{C}}\) is neutral even though \(\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right) = 1.7 \times {10^{ - 7}}M.\) \({K_{\rm{w}}}{\rm{\;is\;}}2.9 \times \)\({10^{ - 14}}{\rm{\;at\;}}{40^ \circ }{\rm{C}}.\)

Identify and label the Brønsted-Lowry acid, its conjugate base, the Brønsted-Lowry base, and its conjugate acid in each of the following equations:

\({\rm{\;(a)\;NO}}_2^ - + {{\rm{H}}_2}{\rm{O}} \to {\rm{HN}}{{\rm{O}}_2} + {\rm{O}}{{\rm{H}}^ - }\).

\({\rm{\;(b)\;HBr}} + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_3}{{\rm{O}}^ + } + {\rm{B}}{{\rm{r}}^ - }\)

\({\rm{\;(c)\;H}}{{\rm{S}}^ - } + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_2}{\rm{S}} + {\rm{O}}{{\rm{H}}^ - }\)

\({\rm{\;(d)\;}}{{\rm{H}}_2}{\rm{PO}}_4^ - + {\rm{O}}{{\rm{H}}^ - } \to {\rm{HP}}{{\rm{O}}_4}^{2 - } + {{\rm{H}}_2}{\rm{O}}\)

\({\rm{\;(e)\;}}{{\rm{H}}_2}{\rm{PO}}_4^ - + {\rm{HCl}} \to {{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4} + {\rm{C}}{{\rm{l}}^ - }\)

\({\rm{\;(f)\;}}{\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} \to {\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }}\)

\({\rm{\;(g)\;C}}{{\rm{H}}_3}{\rm{OH}} + {{\rm{H}}^ - } \to {\rm{C}}{{\rm{H}}_3}{{\rm{O}}^ - } + {{\rm{H}}_2}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free