What are the hydronium and hydroxide ion concentrations in a solution whose \(pH\) is \(6.52?\)

Short Answer

Expert verified

The concentration of hydronium ion is\(c\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right) = 3.02 \times {10^{ - 7}}{\rm{mol}}{{\rm{L}}^{ - 1}}\).

The concentration of hydroxide ion is\(c\left( {O{H^ - }} \right) = 3.31 \times {10^{ - 8}}{\rm{mol}}{{\rm{L}}^{ - 1}}\).

Step by step solution

01

Define the equation to find the concentration of hydronium and hydroxide ions:

The concentration of hydronium ions can be found from the\(pH\)with the equation,\(c\left( {{H_3}{O^ + }} \right) = {10^{ - pH}}mol{L^{ - 1}}\)

The concentration of hydroxide ions can be found from the \(pOH\) with the equation\(c\left( {O{H^ - }} \right) = {10^{ - pOH}}mol{L^{ - 1}}\).

02

Calculate the concentration of hydronium ions and hydroxide ions:

Hence, the equation to find the concentration of hydronium ions is, \(c\left( {{H_3}{O^ + }} \right) = {10^{ - pH}}mol{L^{ - 1}}\)

Substitute the given \(pH\)value,

\(pH = 6.52\)

Thus,

\(c\left( {{H_3}{O^ + }} \right) = {10^{ - pH}}mol{L^{ - 1}}\)

\(\begin{aligned}{c\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right) = {{10}^{ - 6.52}}{\rm{mol}}{{\rm{L}}^{ - 1}}}\\{c\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right) = 3.02 \cdot {{10}^{ - 7}}{\rm{mol}}{{\rm{L}}^{ - 1}}}\end{aligned}\)

Since, the equation to find the concentration of hydroxide ion is, \(c\left( {O{H^ - }} \right) = {10^{ - pOH}}mol{L^{ - 1}}\).

Calculate the\(pOH\)using the equation,

\(pH + pOH = p{K_w}\)

Since,\(p{K_w} = - \log {K_w}\)

Substitute, the ionization constant of water\(({K_w}) = 1.0\)\( \times {10^{ - 14}}\)

\(\begin{aligned}{p{K_w} = - \log \left( {1.0 \cdot {{10}^{ - 14}}} \right)}\\{p{K_w} = 14}\end{aligned}\)

Solve for\(pOH\),

\(\begin{aligned}{pOH = p{K_w} - pH}\\{pOH = 14 - 6.52}\\{pOH = 7.48}\end{aligned}\)

Substitute\(pOH = 7.48\)in the equation, \(c\left( {O{H^ - }} \right) = {10^{ - pOH}}mol{L^{ - 1}}\).

\(\begin{aligned}{c\left( {O{H^ - }} \right) = {{10}^{ - 7.48}}{\rm{mol}}{{\rm{L}}^{ - 1}}}\\{c\left( {O{H^ - }} \right) = 3.31 \cdot {{10}^{ - 8}}{\rm{mol}}{{\rm{L}}^{ - 1}}}\end{aligned}\)

Therefore, the concentration of hydronium ion is \(c\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right) = 3.02 \cdot {10^{ - 7}}{\rm{mol}}{{\rm{L}}^{ - 1}}\)and the concentration of hydroxide ion is\(c\left( {O{H^ - }} \right) = 3.31 \cdot {10^{ - 8}}{\rm{mol}}{{\rm{L}}^{ - 1}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Identify and label the Brønsted-Lowry acid, its conjugate base, the Brønsted-Lowry base, and its conjugate acid in each of the following equations:

\({\rm{\;(a)\;NO}}_2^ - + {{\rm{H}}_2}{\rm{O}} \to {\rm{HN}}{{\rm{O}}_2} + {\rm{O}}{{\rm{H}}^ - }\).

\({\rm{\;(b)\;HBr}} + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_3}{{\rm{O}}^ + } + {\rm{B}}{{\rm{r}}^ - }\)

\({\rm{\;(c)\;H}}{{\rm{S}}^ - } + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_2}{\rm{S}} + {\rm{O}}{{\rm{H}}^ - }\)

\({\rm{\;(d)\;}}{{\rm{H}}_2}{\rm{PO}}_4^ - + {\rm{O}}{{\rm{H}}^ - } \to {\rm{HP}}{{\rm{O}}_4}^{2 - } + {{\rm{H}}_2}{\rm{O}}\)

\({\rm{\;(e)\;}}{{\rm{H}}_2}{\rm{PO}}_4^ - + {\rm{HCl}} \to {{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4} + {\rm{C}}{{\rm{l}}^ - }\)

\({\rm{\;(f)\;}}{\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} \to {\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }}\)

\({\rm{\;(g)\;C}}{{\rm{H}}_3}{\rm{OH}} + {{\rm{H}}^ - } \to {\rm{C}}{{\rm{H}}_3}{{\rm{O}}^ - } + {{\rm{H}}_2}\)

Calculate \(pH\;and the\;pOH\) of each of the following solutions at\(2{5^o}C\)for which the substances ionize completely:

(a)\(0.200M HCl\)

(b)\(0.0143M NaOH\)

(c)\(3.0M HN{O_3}\)

(d) \(0.0031M Ca{(OH)_2}\)

The indicator dinitrophenol is an acid with a \({K_a}\) of \(1.1 \times 1{0^{ - 4}}\). In a \(1.0 \times 1{0^{ - 4}} - M\) solution, it is colourless in acid and yellow in the base. Calculate the \(pH\) range over which it goes from \(10\% \) ionized (colourless) to \(90\% \) ionized (yellow).

A \({\bf{5}}{\bf{.36 g}}\) sample of \({\bf{N}}{{\bf{H}}_{\bf{4}}}{\bf{Cl}}\) was added to \({\bf{25}}.{\bf{0}}{\rm{ }}{\bf{mL}}\) of \({\bf{1}}{\bf{.00 M NaOH}}\) and the resulting solution diluted to\({\bf{0}}.{\bf{100}}{\rm{ }}{\bf{L}}\).

(a) What is the pH of this buffer solution?

(b) Is the solution acidic or basic?

(c) What is the pH of a solution that results when \({\bf{3}}.{\bf{00}}{\rm{ }}{\bf{mL}}\) of \({\bf{0}}.{\bf{034}}{\rm{ }}{\bf{M}}{\rm{ }}{\bf{HCl}}\) is added to the solution?

Calculate the pH of a buffer solution prepared from 0.155 mol of phosphoric acid, 0.250 mole of KH2PO4, and enough water to make 0.500 L of solution.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free