What are the hydronium and hydroxide ion concentrations in a solution whose \(pH\) is \(6.52?\)

Short Answer

Expert verified

The concentration of hydronium ion is\(c\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right) = 3.02 \times {10^{ - 7}}{\rm{mol}}{{\rm{L}}^{ - 1}}\).

The concentration of hydroxide ion is\(c\left( {O{H^ - }} \right) = 3.31 \times {10^{ - 8}}{\rm{mol}}{{\rm{L}}^{ - 1}}\).

Step by step solution

01

Define the equation to find the concentration of hydronium and hydroxide ions:

The concentration of hydronium ions can be found from the\(pH\)with the equation,\(c\left( {{H_3}{O^ + }} \right) = {10^{ - pH}}mol{L^{ - 1}}\)

The concentration of hydroxide ions can be found from the \(pOH\) with the equation\(c\left( {O{H^ - }} \right) = {10^{ - pOH}}mol{L^{ - 1}}\).

02

Calculate the concentration of hydronium ions and hydroxide ions:

Hence, the equation to find the concentration of hydronium ions is, \(c\left( {{H_3}{O^ + }} \right) = {10^{ - pH}}mol{L^{ - 1}}\)

Substitute the given \(pH\)value,

\(pH = 6.52\)

Thus,

\(c\left( {{H_3}{O^ + }} \right) = {10^{ - pH}}mol{L^{ - 1}}\)

\(\begin{aligned}{c\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right) = {{10}^{ - 6.52}}{\rm{mol}}{{\rm{L}}^{ - 1}}}\\{c\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right) = 3.02 \cdot {{10}^{ - 7}}{\rm{mol}}{{\rm{L}}^{ - 1}}}\end{aligned}\)

Since, the equation to find the concentration of hydroxide ion is, \(c\left( {O{H^ - }} \right) = {10^{ - pOH}}mol{L^{ - 1}}\).

Calculate the\(pOH\)using the equation,

\(pH + pOH = p{K_w}\)

Since,\(p{K_w} = - \log {K_w}\)

Substitute, the ionization constant of water\(({K_w}) = 1.0\)\( \times {10^{ - 14}}\)

\(\begin{aligned}{p{K_w} = - \log \left( {1.0 \cdot {{10}^{ - 14}}} \right)}\\{p{K_w} = 14}\end{aligned}\)

Solve for\(pOH\),

\(\begin{aligned}{pOH = p{K_w} - pH}\\{pOH = 14 - 6.52}\\{pOH = 7.48}\end{aligned}\)

Substitute\(pOH = 7.48\)in the equation, \(c\left( {O{H^ - }} \right) = {10^{ - pOH}}mol{L^{ - 1}}\).

\(\begin{aligned}{c\left( {O{H^ - }} \right) = {{10}^{ - 7.48}}{\rm{mol}}{{\rm{L}}^{ - 1}}}\\{c\left( {O{H^ - }} \right) = 3.31 \cdot {{10}^{ - 8}}{\rm{mol}}{{\rm{L}}^{ - 1}}}\end{aligned}\)

Therefore, the concentration of hydronium ion is \(c\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right) = 3.02 \cdot {10^{ - 7}}{\rm{mol}}{{\rm{L}}^{ - 1}}\)and the concentration of hydroxide ion is\(c\left( {O{H^ - }} \right) = 3.31 \cdot {10^{ - 8}}{\rm{mol}}{{\rm{L}}^{ - 1}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the percent ionization of a 0.10-M solution of acetic acid with a pH of 2.89.

What concentration of\(N{H_4}N{O_3}\)is required to make\(\left( {O{H^ - }} \right) = 1.0 \times 1{0^{ - 5}}\)in a\(0.200 M\)solution of\(N{H_3}\)?

Check your learning the ion product of water at \(8{0^^\circ }C\) is \(2.4 \times 1{0^{ - 13}}.\) What are the concentrations of hydronium and hydroxide ions in pure water at\(8{0^^\circ }C\) ?

Question: Write equations that show \(N{H_3}\) as both a conjugate acid and a conjugate base.

Identify and label the Brønsted-Lowry acid, its conjugate base, the Brønsted-Lowry base, and its conjugate acid in each of the following equations:

\({\rm{\;(a)\;NO}}_2^ - + {{\rm{H}}_2}{\rm{O}} \to {\rm{HN}}{{\rm{O}}_2} + {\rm{O}}{{\rm{H}}^ - }\).

\({\rm{\;(b)\;HBr}} + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_3}{{\rm{O}}^ + } + {\rm{B}}{{\rm{r}}^ - }\)

\({\rm{\;(c)\;H}}{{\rm{S}}^ - } + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_2}{\rm{S}} + {\rm{O}}{{\rm{H}}^ - }\)

\({\rm{\;(d)\;}}{{\rm{H}}_2}{\rm{PO}}_4^ - + {\rm{O}}{{\rm{H}}^ - } \to {\rm{HP}}{{\rm{O}}_4}^{2 - } + {{\rm{H}}_2}{\rm{O}}\)

\({\rm{\;(e)\;}}{{\rm{H}}_2}{\rm{PO}}_4^ - + {\rm{HCl}} \to {{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4} + {\rm{C}}{{\rm{l}}^ - }\)

\({\rm{\;(f)\;}}{\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} \to {\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }}\)

\({\rm{\;(g)\;C}}{{\rm{H}}_3}{\rm{OH}} + {{\rm{H}}^ - } \to {\rm{C}}{{\rm{H}}_3}{{\rm{O}}^ - } + {{\rm{H}}_2}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free