What is the ionization constant at 25oC for the weak acid \(C{H_3}NH_3^ + \), the conjugate acid of the weak base \(C{H_3}N{H_2}\)\({K_b} = 4.4 \times 1{0^{ - 4}}\) ,.

Short Answer

Expert verified

Ionization constant for weak acid is

\({K_a} = 2.3 \times 1{0^{ - 11}}\)

Step by step solution

01

Given Information

For weak acid and the weak base,\({K_b} = 4.4 \times 1{0^{ - 4}}\)

02

Calculating ionization constant of an acid

Given weak conjugated acid as\(C{H_3}NH_3^ + \)

\(C{H_3}NH_3^ + (aq) + {H_2}O(l) \to C{H_3}N{H_2}(aq) + {H_3}{O^ + }(aq)\)

To calculate Ionization equation

\({K_a} = \frac{{c\left( {C{H_3}N{H_2}} \right) \times c\left( {{H_3}{O^ + }} \right)}}{{c\left( {C{H_3}NH_3^ + } \right)}}\)

Ionization constant of a weak base \(C{H_3}N{H_2}\)Dissociation equation is

\(C{H_3}N{H_2}(aq) + {H_2}O(l) \to C{H_3}NH_3^ + (aq) + O{H^ - }(aq)\)

Ionization constant is

\({K_b} = \frac{{c\left( {C{H_3}NH_3^ + } \right) \times c\left( {O{H^ - }} \right)}}{{c\left( {C{H_3}N{H_2}} \right)}}\)

\({K_b} = 4.4 \times 1{0^{ - 4}}\)

Equation for dissociation for water is

\({H_2}O(l) + {H_2}O(l) \to {H_3}{O^ + }(aq) + O{H^ - }(aq)\)

Constant of water ionization for \({K_w}\)is

\({K_w} = c\left( {{H_3}{O^ + }} \right) \times c\left( {O{H^ - }} \right)\)

\({K_w} = 1.0 \times 1{0^{ - 14}}\)

Concentration of \(C{H_3}N{H_2}\)is

\({K_b} = \frac{{c\left( {C{H_3}NH_3^ + } \right) \times c\left( {O{H^ - }} \right)}}{{c\left( {C{H_3}N{H_2}} \right)}}\)

\({K_b} \times c\left( {c{H_3}N{H_2}} \right) = c\left( {C{H_3}NH_3^ + } \right) \times c\left( {O{H^ - }} \right)\)

\(c\left( {C{H_3}N{H_2}} \right) = \frac{{c\left( {C{H_3}NH_3^ + } \right) \times c\left( {O{H^ - }} \right)}}{{{K_b}}}\)

\({K_a} = \frac{{c\left( {C{H_3}N{H_2}} \right) \times c\left( {{H_3}{O^ + }} \right)}}{{c\left( {C{H_3}NH_3^ + } \right)}}\)

\({K_a} = \frac{{c\left( {C{H_3}NH_3^ + } \right) \times c\left( {O{H^ - }} \right) \times c\left( {{H_3}{O^ + }} \right)}}{{c\left( {C{H_3}NH_3^ + } \right) \times {K_b}}}\)

Concentration of \(C{H_3}NH_3^ + \)each other, we get

\({K_a} = \frac{{c\left( {O{H^ - }} \right) \times c\left( {{H_3}{O^ + }} \right)}}{{{K_b}}}\)

Replacing \(c\left( {O{H^ - }} \right) \times c\left( {{H_3}{O^ + }} \right)\) as \({K_w}\)

\({K_a} = \frac{{{K_w}}}{{{K_b}}}\)

Ionization of a weak acid is

\({K_a} = \frac{{1.0 \times 1{0^{ - 14}}}}{{4.4 \times 1{0^{ - 4}}}}\)

\({K_a} = 2.3 \times 1{0^{ - 11}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the effect on the concentration of ammonia, hydroxide ion, and ammonium ion when the following are added to a basic buffer solution of equal concentrations of ammonia and ammonium nitrate:

(a)\(KI\)

(b)\(N{H_3}\)

(c)\(HI\)

(d)\(NaOH\)

(e)\(N{H_4}Cl\)

We can ignore the contribution of water to the concentration of\(O{H^ - }\)in a solution of the following bases:\(0.0784 M {C_6}{H_5}N{H_2}\), a weak base\(0.11M{\left( {C{H_3}} \right)_3}\;N\), a weak base but not the contribution of water to the concentration of\({H_3}{O^ + }?\)

The ionization constant for water\(\left( {{K_w}} \right)\;is\;9.311 \times 1{0^{ - 14}}\;at\;6{0^o}C\). Calculate \(\left( {{H_3}{O^ + }} \right),\left( {O{H^ - }} \right),pH,\;and\;pOH\)for pure water at \(6{0^o}C\).

Identify and label the Brønsted-Lowry acid, its conjugate base, the Brønsted-Lowry base, and its conjugate acid in each of the following equations:

\({\rm{\;(a)\;HN}}{{\rm{O}}_3} + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_3}{{\rm{O}}^ + } + {\rm{NO}}_3^ - \)

\({\rm{b) C}}{{\rm{N}}^ - } + {{\rm{H}}_2}{\rm{O}} \to {\rm{HCN}} + {\rm{O}}{{\rm{H}}^ - }\)

\({\rm{\;(c)\;}}{{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4} + {\rm{C}}{{\rm{l}}^ - } \to {\rm{HCl}} + {\rm{HSO}}_4^ - \)

\({\rm{\;(d)\;HSO}}_4^ - + {\rm{O}}{{\rm{H}}^ - } \to {\rm{SO}}_4^{2 - } + {{\rm{H}}_2}{\rm{O}}\)

\({\rm{\;(e)\;}}{{\rm{O}}^{2 - }} + {{\rm{H}}_2}{\rm{O}} \to 2{\rm{O}}{{\rm{H}}^ - }\)

\({\rm{\;(f)\;}}{\left( {{\rm{Cu}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_3}({\rm{OH}})} \right)^ + } + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} \to {\left( {{\rm{Cu}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_4}} \right)^{2 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }}\)

\({\rm{\;(g)\;}}{{\rm{H}}_2}{\rm{S}} + {\rm{NH}}_2^ - \to {\rm{H}}{{\rm{S}}^ - } + {\rm{N}}{{\rm{H}}_3}\)

Is the self ionization of water endothermic or exothermic? The ionization constant for water \(\left( {{K_W}} \right)\)is 2.9* \({10^{ - 14}}\)at \({40^ \circ }{\rm{C}}\)and 9.3 x \({10^{ - 14}}\)at \({60^ \circ }{\rm{C}}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free