From the equilibrium concentrations given, calculate \({K_a}\)for each of the weak acids and \({K_b}\)for each of the weak bases.
\(\begin{aligned}(a)N{H_3}:\left( {O{H^ - }} \right) = 3.1 \times 1{0^{ - 3}}M\left( {NH_4^ + } \right) = 3.1 \times 1{0^{ - 3}}M;\left( {N{H_3}} \right) = 0.533M;\\(b)HN{O_2}:\left( {{H_3}{O^ + }} \right) = 0.011M;\left( {NO_2^ - } \right) = 0.0438M;\left( {HN{O_2}} \right) = 1.07M;\\(c){\left( {C{H_3}} \right)_3}\;N:\left( {{{\left( {C{H_3}} \right)}_3}\;N} \right) = 0.25M;\left( {{{\left( {C{H_3}} \right)}_3}N{H^ + }} \right) = 4.3 \times 1{0^{ - 3}}M;\left( {O{H^ - }} \right) = 4.3 \times 1{0^{ - 3}}M;\\(d)N{H_4} + :\left( {N{H_4} + } \right) = 0.100M;\left( {N{H_3}} \right) = 7.5 \times 1{0^{ - 6}}M;\left( {{H_3}{O^ + }} \right) = 7.5 \times 1{0^{ - 6}}M\end{aligned}\)
\(\begin{aligned}\left( {N{H_3}} \right) = 7.5 \times 1{0^{ - 6}}M\\\left( {{H_3}{O^ + }} \right) = 7.5 \times 1{0^{ - 6}}M\end{aligned}\)