Chapter 14: Q14.3-59 E (page 832)
Determine \({K_a}\)for hydrogen sulfate ion, \(HS{O_4}^ - .\)In a \(0.10 - M\)solution the acid is \(29\% \)ionized.
Short Answer
The acid ionization constant for \({\rm{HSO}}_4^ - \) is \(0.01\).
Chapter 14: Q14.3-59 E (page 832)
Determine \({K_a}\)for hydrogen sulfate ion, \(HS{O_4}^ - .\)In a \(0.10 - M\)solution the acid is \(29\% \)ionized.
The acid ionization constant for \({\rm{HSO}}_4^ - \) is \(0.01\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFrom the equilibrium concentrations given, calculate for each of the weak acids and for each of the weak bases.
\(\begin{aligned}(a)C{H_3}C{O_2}H:\left( {{H_3}{O^ + }} \right) = 1.34 \times 1{0^{ - 3}}M;\left( {C{H_3}CO_2^ - } \right) = 1.34 \times 1{0^{ - 3}}M;\left( {C{H_3}C{O_2}H} \right) = 9.866 \times 1{0^{ - 2}}M;\\(b)Cl{O^ - }:\left( {O{H^ - }} \right) = 4.0 \times 1{0^{ - 4}}M;(HClO) = 2.38 \times 1{0^{ - 5}}M;\left( {Cl{O^ - }} \right) = 0.273M;\\(c)HC{O_2}H:\left( {HC{O_2}H} \right) = 0.524M;\left( {{H_3}{O^ + }} \right) = 9.8 \times 1{0^{ - 3}}M\left( {HCO_2^ - } \right) = 9.8 \times 1{0^{ - 3}}M;\\(d){C_6}{H_5}NH_3^ + :\left( {{C_6}{H_5}NH_3^ + } \right) = 0.233M;\left( {{C_6}{H_5}N{H_2}} \right) = 2.3 \times 1{0^{ - 3}}M;\left( {{H_3}{O^ + }} \right) = 2.3 \times 1{0^{ - 3}}M\end{aligned}\)
Nicotine, \({C_{10}}{H_{14}}\;{N_2}\), is a base that will accept two protons \(\left( {{K_1} = 7 \times 1{0^{ - 7}},{K_2} = 1.4 \times 1{0^{ - 11}}} \right)\). What is the concentration of each species present in a \(0.050 - M\) solution of nicotine?
Calculate \(pH\;and the\;pOH\) of each of the following solutions at\(2{5^o}C\)for which the substances ionize completely:
(a)\(0.200M HCl\)
(b)\(0.0143M NaOH\)
(c)\(3.0M HN{O_3}\)
(d) \(0.0031M Ca{(OH)_2}\)
Determine whether aqueous solutions of the following salts are acidic, basic, or neutral
(a) \( Al{\left( {N{O_3}} \right)_3}\)
(b) \( RbI\)
(c) \( KHC{O_2}\)
(d) \( C{H_3}N{H_3}Br\)
The ionization constant for water\(\left( {{K_w}} \right)\;is\;9.311 \times 1{0^{ - 14}}\;at\;6{0^o}C\). Calculate \(\left( {{H_3}{O^ + }} \right),\left( {O{H^ - }} \right),pH,\;and\;pOH\)for pure water at \(6{0^o}C\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.