Calculate the concentration of all solute species in each of the following solutions of acids or bases. Assume that the ionization of water can be neglected, and show that the change in the initial concentrations can be neglected. Ionization constants can be found in Appendix H and Appendix I.

\((a) 0.0092M HClO\), a weak acid

\((b) 0.0784M {C_6}{H_5}N{H_2}\), a weak base

\((c) 0.0810{\rm{ }}M HCN\), a weak acid

\((d) 0.11M{\left( {C{H_3}} \right)_3}\;N\), a weak base

\((e) 0.120MFe\left( {{H_2}O} \right)_6^{2 + }\), a weak acid \({K_a} = 1.6 \times 1{0^{ - 7}}\)

Short Answer

Expert verified

The solutions are:

\(\begin{aligned}{\rm{a) }}\;{\rm{(}}{{\rm{H}}^{\rm{ + }}}{\rm{) = }}\left( {{\rm{Cl}}{{\rm{O}}^{\rm{ - }}}} \right){\rm{ = 1}}{\rm{.63 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\;{\rm{M}}\\\;\;\;\;\left( {{\rm{HClO}}} \right){\rm{ = 0}}{\rm{.0092}}\;{\rm{M}}{\rm{.}}\\\\{\rm{b) }}\left( {{\rm{O}}{{\rm{H}}^{\rm{ - }}}} \right){\rm{ = }}\left( {{{\rm{C}}_{\rm{6}}}{{\rm{H}}_{\rm{5}}}{\rm{NH}}_{\rm{3}}^{\rm{ + }}} \right){\rm{ = 5}}{\rm{.8 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{M}}\\\;\;\;\;\left( {{{\rm{C}}_{\rm{6}}}{{\rm{H}}_{\rm{5}}}{\rm{N}}{{\rm{H}}_{\rm{2}}}} \right){\rm{ = 0}}{\rm{.0784}}\;{\rm{M}}{\rm{.}}\\\\{\rm{c) }}\left( {{{\rm{H}}^{\rm{ + }}}} \right){\rm{ = }}\left( {{\rm{C}}{{\rm{N}}^{\rm{ - }}}} \right){\rm{ = 6}}{\rm{.3 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}\;{\rm{M}}\\\;\;\;\;\left( {{\rm{HCN}}} \right){\rm{ = 0}}{\rm{.0810}}\;{\rm{M}}{\rm{.}}\\\\{\rm{d)}}\;\left( {{\rm{O}}{{\rm{H}}^{\rm{ - }}}} \right){\rm{ = }}\left( {{{\left( {{\rm{C}}{{\rm{H}}_{\rm{3}}}} \right)}_{\rm{3}}}{\rm{N}}{{\rm{H}}^{\rm{ + }}}} \right){\rm{ = 2}}{\rm{.6 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}\;{\rm{M}}\\\;\;\;\left( {{{\left( {{\rm{CC}}{{\rm{H}}_{\rm{3}}}} \right)}_{\rm{3}}}{\rm{\;N}}} \right){\rm{ = 0}}{\rm{.11}}\;{\rm{M}}{\rm{.}}\\\\{\rm{e)}}\;\left( {{{\rm{H}}^{\rm{ + }}}} \right){\rm{ = }}{\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)}_{\rm{5}}}{\rm{OH}}} \right)^{\rm{ + }}}{\rm{ = 1}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\;{\rm{M}}\\\;\;\;{\left( {{\rm{Fe}}{{\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)}_{\rm{6}}}} \right)^{{\rm{2 + }}}}{\rm{ = 0}}{\rm{.120}}\;{\rm{M}}{\rm{.}}\end{aligned}\)

Step by step solution

01

(a) Calculation of Equilibrium constant

a. We can start by writing the ionization reaction.

\(\begin{aligned}{\bf{HClO(aq)}} \to {{\bf{H}}^{\bf{ + }}}{\bf{(aq) + }}{{\bf{l}}^{\bf{ - }}}{\bf{(aq)}}\\{{\bf{K}}_{\bf{a}}}{\bf{ = }}\;\frac{{\left( {{{\bf{H}}^{\bf{ + }}}} \right){\bf{ \times }}\left( {{\bf{Cl}}{{\bf{O}}^{\bf{ - }}}} \right)}}{{\left( {{\bf{HClO}}} \right)}}.\end{aligned}\)

We can designate\({{\bf{H}}^{\bf{ + }}}\)and\({\bf{Cl}}{{\bf{O}}^{\bf{ - }}}\)as x and presume that their concentrations are the same. We have 0.0092 M of HCl at the start of the reaction, as well as 0 M of\({{\bf{H}}^{\bf{ + }}}\)and\({\bf{Cl}}{{\bf{O}}^{\bf{ - }}}\). When the reaction begins, the concentration of HClO falls by x, while the concentrations of\({{\bf{H}}^{\bf{ + }}}\)and\({\bf{Cl}}{{\bf{O}}^{\bf{ - }}}\)ions grow by x, until the equilibrium is attained. As a result, the equilibrium concentrations are as follows:

Highlight ColorCode: Light Blue (#1478C8)

\(\begin{aligned}\left( {HClO} \right) = 0.0092 - x\\\;\;\;\;\left( {{H^ + }} \right) = \left( {Cl{O^ - }} \right) = x.\end{aligned}\)

Now the equation for \({K_a}\) will look like this:

\({K_a} = \frac{{{x^2}}}{{0.0092 - x}}.\)

We can assume that \(0.0092 - x\) is almost equivalent to \(0.0092\) because the \({K_a}\) value is so low.

\(\begin{aligned}\;\;\;\;\;\;\;\;\;{K_a} = \frac{{{x^2}}}{{0.0092}}\\2.9 \times 1{0^{ - 8}} = \frac{{{x^2}}}{{0.0092}}\\\;\;\;\;\;\;\;\;\;\;\;\;x = 1.63 \times 1{0^{ - 5}}.\end{aligned}\)

As a result, we may be confident that the change in concentration for the acid molecule can be ignored.

\(\frac{{1.63 \times 1{0^{ - 5}}}}{{0.0092}} = 0.002 = 0.2\% .\)

Because it is less than \(1\) percent of the initial value, \({H^ + }\)and \(Cl{O^ - }\)ions have a concentration of \(1.63 \times 1{0^{ - 5}}\;M,\) whereas has a concentration of \(Cl{O^ - }\)is \(0.0092\;M.\)

02

(b) Calculation of Equilibrium constant

b. The reaction in question is:

\({C_6}{H_5}N{H_2}(aq) + {H_2}O(l) \to {C_6}{H_5}NH_3^ + (aq) + O{H^ - }(aq).\)

The \({K_a}\)value is:

\({K_a} = \frac{{\left( {{C_6}{H_5}NH_3^ + } \right) \times \left( {O{H^ - }} \right)}}{{\left( {{C_6}{H_5}N{H_2}} \right)}}.\)

Again, we assume that the concentrations of \({C_6}{H_5}NH_3^ + \) and \(O{H^ - }\)are the same, and that the change in \({C_6}{H_5}N{H_2}\) is negligible:

\(\begin{aligned}\;\;\;\;\;\;\;\;\;\;\;{K_a} = \frac{{{x^2}}}{{0.0784}}\\4.3 \times 1{0^{ - 10}} = \frac{{{x^2}}}{{0.0784}}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;x = 5.8 \times 1{0^{ - 6}}\;M.\end{aligned}\)

The assumption that the concentration change of \({C_6}{H_5}N{H_2}\) is small, is accurate because:

\(\frac{{5.8 \times 1{0^{ - 6}}}}{{0.0784}} = 7.4 \times 1{0^{ - 5}}.\)

Less than \(1\) percent change in the concentration of \(O{H^ - }\) and \({C_6}{H_5}NH_3^ + \) is \(5.8 \times 1{0^{ - 6}}\,M,\) and the concentration of \({C_6}{H_5}N{H_2}\) is \(0.0784\;M.\)

03

(c) Calculation of Equilibrium constant

c. The reaction in question is:

\(HCN(aq) \to {H^ + }(aq) + C{N^ - }(aq).\)

The \({K_a}\) value is:

\({K_a} = \frac{{\left( {{H^ + }} \right) \times \left( {C{N^ - }} \right)}}{{\left( {HCN} \right)}}.\)

We may assume that the concentrations of \({H^ + }\) and \(C{N^ - }\)are the same and that the concentration change for \(HCN\) is insignificant once again.

\(\begin{aligned}4.9 \times 1{0^{ - 10}} = \frac{{{x^2}}}{{0.0810}}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;x = 6.3 \times 1{0^{ - 6}} M.\end{aligned}\)

The assumption that the decrease in \(HCN\) concentration is negligible is true because:

\(\frac{{6.3 \times 1{0^{ - 6}}}}{{0.0810}} = 7.8 \times 1{0^{ - 5}}.\)

Less than \(1\) percent change in the concentration of \({H^ + }\) and \(C{N^ - }\) is \(6.3 \times 1{0^{ - 6}} M,\) and the concentration of \(HCN\) is \(0.0810 M.\)

04

(d) Calculation of Equilibrium constant

d. The reaction in question is:

\(\begin{aligned}{\left( {C{H_3}} \right)_3}\;N(aq) + {H_2}O(l) \to {\left( {C{H_3}} \right)_3}N{H^ + }(aq) + O{H^ - }(aq).\\\\The {K_a} value is:\\{K_a} = \frac{{\left( {{{\left( {C{H_3}} \right)}_3}N{H^ + }} \right) \times \left( {O{H^ - }} \right)}}{{\left( {{{\left( {C{H_3}} \right)}_3}N} \right)}}.\end{aligned}\)

We can assume that the concentrations of \({\left( {C{H_3}} \right)_3}N{H^ + }\) and \(O{H^ - }\) are the same, and that the change in the concentration of \({\left( {C{H_3}} \right)_3}N\) is negligible.

\(\begin{aligned}6.3 \times 1{0^{ - 5}} = \frac{{{x^2}}}{{0.11}}\\\;\;\;\;\;\;\;\;\;\;\;\;x = 2.6 \times 1{0^{ - 3}}\;M.\end{aligned}\)

The assumption that the change in \({\left( {C{H_3}} \right)_3}N\) concentration is negligible is valid because:

\(\frac{{2.6 \times 1{0^{ - 3}}}}{{0.11}} = 0.02.\)

Less than \(2\) percent change in the concentration of \({\left( {C{H_3}} \right)_3}N{H^ + }\) and \(O{H^ - }\) is \(2.6 \times 1{0^{ - 3}} M,\) and the concentration of \({\left( {C{H_3}} \right)_3}N\) is \(0.11 M.\)

05

(e) Calculation of Equilibrium constant

e. The reaction in question is:

\(\begin{aligned}{\left( {Fe{{\left( {{H_2}O} \right)}_6}} \right)^{2 + }}(aq) \to {\left( {Fe{{\left( {{H_2}O} \right)}_5}OH} \right)^ + }(aq) + {H^ + }(aq).\\\\The {K_a} value is:\\{K_a} = \frac{{{{\left( {Fe{{\left( {{H_2}O} \right)}_5}OH} \right)}^ + } \times \left( {{H^ + }} \right)}}{{{{\left( {Fe{{\left( {{H_2}O} \right)}_6}} \right)}^{2 + }}}}.\end{aligned}\)

We can assume that the concentrations of \({\left( {Fe{{\left( {{H_2}O} \right)}_5}OH} \right)^ + }\) and \({H^ + }\) are the same, and that the concentration change of \({\left( {Fe{{\left( {{H_2}O} \right)}_6}} \right)^{2 + }}\) is inconsequential once again.

\(\begin{aligned}1.6 \times 1{0^{ - 7}} = \frac{{{x^2}}}{{0.120}}\\\;\;\;\;\;\;\;\;\;\;\;\;x = 1.4 \times 1{0^{ - 4}} M.\end{aligned}\)

The assumption that the change in \({\left( {Fe{{\left( {{H_2}O} \right)}_5}OH} \right)^ + }\) concentration is negligible is accurate because:

\(\frac{{1.4 \times 1{0^{ - 4}}}}{{0.120}} = 0.001.\)

Less than \(1\) percent change in the concentration of \({\left( {Fe{{\left( {{H_2}O} \right)}_5}OH} \right)^ + }\) and \({H^ + }\) is \(1.4 \times 1{0^{ - 4}} M,\) and the concentration of \({\left( {Fe{{\left( {{H_2}O} \right)}_6}} \right)^{2 + }}\) is. \(0.120 M.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A buffer solution is prepared from equal volumes of \({\bf{0}}.{\bf{200}}{\rm{ }}{\bf{M}}\) acetic acid and \({\bf{0}}.{\bf{600}}{\rm{ }}{\bf{M}}\) sodium acetate. Use \({\bf{1}}.{\bf{80}}{\rm{ }} \times {\rm{ }}{\bf{1}}{{\bf{0}}^{ - {\bf{5}}}}\) as Ka for acetic acid.

(a) What is the pH of the solution?

(b) Is the solution acidic or basic?

(c) What is the pH of a solution that results when \({\bf{3}}.{\bf{00}}{\rm{ }}{\bf{mL}}\) of \({\bf{0}}.{\bf{034}}{\rm{ }}{\bf{M}}{\rm{ }}{\bf{HCl}}\) is added to \({\bf{0}}.{\bf{200}}{\rm{ }}{\bf{L}}\) of the original buffer?

Which of the following will increase the percentage of \({\rm{N}}{{\rm{H}}_3}\)that is converted to the ammonium ion in water (Hint: Use Le Châtelier's principle)?

(a) Addition of \(NaOH\)

(b) Addition of \(HCl\)

(c) Addition of \(N{H_4}Cl\)

What will be the\(pH\)of a buffer solution prepared from\(0.20\;mol N{H_3}, 0.40\;mol N{H_4}N{O_3}\), and just enough water to give\(1.00\;L\)of solution?

Use this list of important industrial compounds (and Figure 14.8) to answer the following questions regarding: \(CaO,Ca{(OH)_2},NaOH,C{H_3}C{O_2}H,{H_2}C{O_3},HF,HN{O_2},{H_3}P{O_4},HCl,HN{O_3},{H_2}S{O_4},N{H_3}\) (a) Identify the strong Brønsted-Lowry acids and strong Brønsted-Lowry bases. (b) List those compounds in (a) that can behave as Brønsted-Lowry acids with strengths lying between those of \({H_3}{O^ + }and\;{H_2}O\). (c) List those compounds in (a) that can behave as Brønsted-Lowry bases with strengths lying between those

\({H_2}O\;and\;O{H^ - }\)

What are the\(pH\;and\;pOH\) of a solution of \(2.0\)\(M\)\(HCl\), which ionizes completely?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free