The pH of a \(0.20 - M\) solution of \(HF\) is \(1.92.\) Determine \({K_a}\) for \(HF\) from these data.

Short Answer

Expert verified

A hydrofluoric acid has a \({K_a}\) value of \(5.26 \times 1{0^{ - 4}}.\)

Step by step solution

01

Calculation of concentration of HF

We can compute the concentration of \({{\bf{H}}^{\bf{ + }}}\) ions since we know the pH of the solution:

\(\begin{aligned}\;\;\;{\bf{pH = - log}}\left( {{{\bf{H}}^{\bf{ + }}}} \right)\\\left( {{{\bf{H}}^{\bf{ + }}}} \right){\bf{ = 1}}{{\bf{0}}^{{\bf{ - pH}}}}\;{\bf{M}}\\\;\;\;\;\;\;\;\;{\bf{ = 1}}{{\bf{0}}^{{\bf{ - 1}}{\bf{.92}}}}\;{\bf{M}}\\\;\;\;\;\;\;\;\;{\bf{ = 0}}{\bf{.01}}\;{\bf{M}}.\end{aligned}\)

The dissociation process of hydrofluoric acid is \(HF(aq) \to {H^ + }(aq) + {F^ - }(aq).\)

\(HF(aq) \to {H^ + }(aq) + {F^ - }(aq)\)

So the \({K_a}\) value equals:

\({K_a} = \frac{{\left( {{H^ + }} \right){\bf{ \times }}\left( {{F^ - }} \right)}}{{\left( {HF} \right)}}.\)

The concentrations of \({H^ + }\) and \({F^ - }\) are assumed to be \(0.01 M,\) the same. We only have the \(HF\) in a concentration of \(0.20 M\) at the start of the reaction. The concentration of \(HF\) lowers by \(x,\) while the concentrations of \({H^ + }\) and \({F^ - }\) rise by \(x\) until equilibrium is established.

We know the concentrations of \({H^ + }\) and \({F^ - }\) because we know the concentrations of \({H^ + }\)and \({F^ - }.\) As a result, the equilibrium concentration of \(HF\) is as follows:

\(\begin{aligned}\left( {HF} \right) &= 0.20M - x\\(HF) &= (0.20 - 0.01) M\\\left( {HF} \right) &= 0.19 M.\end{aligned}\)

02

Calculation of acid dissociation

We can compute the \({K_a}\) value now that we have all of the equilibrium concentrations:

\(\begin{aligned}{K_a} &= \frac{{\left( {{H^ + }} \right) \times \left( {{F^ - }} \right)}}{{\left( {HF} \right)}}\\\;\;\;\;\; &= \frac{{0.01 M \times 0.01 M}}{{0.19 M}}\\\;\;\;\;\; &= 5.26 \times 1{0^{ - 4}}.\end{aligned}\)

A hydrofluoric acid has a \({K_a}\) value of \(5.26 \times 1{0^{ - 4}}.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the effect on the concentration of hydrofluoric acid, hydronium ion, and fluoride ion when the following are added to separate solutions of hydrofluoric acid?

\(\begin{aligned}{l}(a)HCl\\(b)KF\\(c)NaCl\\(d)KOH\\(e)HF\end{aligned}\)

The equation for the equilibrium is \[HF(aq) + {H_2}O(l) \rightleftharpoons {H_3}{O^ + }(aq) + {F^ - }(aq)\]

Identify and label the Brønsted-Lowry acid, its conjugate base, the Brønsted-Lowry base, and its conjugate acid in each of the following equations:

\({\rm{\;(a)\;HN}}{{\rm{O}}_3} + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_3}{{\rm{O}}^ + } + {\rm{NO}}_3^ - \)

\({\rm{b) C}}{{\rm{N}}^ - } + {{\rm{H}}_2}{\rm{O}} \to {\rm{HCN}} + {\rm{O}}{{\rm{H}}^ - }\)

\({\rm{\;(c)\;}}{{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4} + {\rm{C}}{{\rm{l}}^ - } \to {\rm{HCl}} + {\rm{HSO}}_4^ - \)

\({\rm{\;(d)\;HSO}}_4^ - + {\rm{O}}{{\rm{H}}^ - } \to {\rm{SO}}_4^{2 - } + {{\rm{H}}_2}{\rm{O}}\)

\({\rm{\;(e)\;}}{{\rm{O}}^{2 - }} + {{\rm{H}}_2}{\rm{O}} \to 2{\rm{O}}{{\rm{H}}^ - }\)

\({\rm{\;(f)\;}}{\left( {{\rm{Cu}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_3}({\rm{OH}})} \right)^ + } + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} \to {\left( {{\rm{Cu}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_4}} \right)^{2 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }}\)

\({\rm{\;(g)\;}}{{\rm{H}}_2}{\rm{S}} + {\rm{NH}}_2^ - \to {\rm{H}}{{\rm{S}}^ - } + {\rm{N}}{{\rm{H}}_3}\)

Explain why the neutralization reaction of a weak acid and a strong base gives a weakly basic solution

Explain why the ionization constant, \({K_a}\), for\({H_2}S{O_4}\) is larger than the ionization constant for \({H_2}S{O_3}\).

From the equilibrium concentrations given, calculate \({K_a}\)for each of the weak acids and \({K_b}\)for each of the weak bases.

\(\begin{aligned}(a)N{H_3}:\left( {O{H^ - }} \right) = 3.1 \times 1{0^{ - 3}}M\left( {NH_4^ + } \right) = 3.1 \times 1{0^{ - 3}}M;\left( {N{H_3}} \right) = 0.533M;\\(b)HN{O_2}:\left( {{H_3}{O^ + }} \right) = 0.011M;\left( {NO_2^ - } \right) = 0.0438M;\left( {HN{O_2}} \right) = 1.07M;\\(c){\left( {C{H_3}} \right)_3}\;N:\left( {{{\left( {C{H_3}} \right)}_3}\;N} \right) = 0.25M;\left( {{{\left( {C{H_3}} \right)}_3}N{H^ + }} \right) = 4.3 \times 1{0^{ - 3}}M;\left( {O{H^ - }} \right) = 4.3 \times 1{0^{ - 3}}M;\\(d)N{H_4} + :\left( {N{H_4} + } \right) = 0.100M;\left( {N{H_3}} \right) = 7.5 \times 1{0^{ - 6}}M;\left( {{H_3}{O^ + }} \right) = 7.5 \times 1{0^{ - 6}}M\end{aligned}\)

\(\begin{aligned}\left( {N{H_3}} \right) = 7.5 \times 1{0^{ - 6}}M\\\left( {{H_3}{O^ + }} \right) = 7.5 \times 1{0^{ - 6}}M\end{aligned}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free