Chapter 14: Q14.3-74 E (page 834)
The pH of a \(0.20 - M\) solution of \(HF\) is \(1.92.\) Determine \({K_a}\) for \(HF\) from these data.
Short Answer
A hydrofluoric acid has a \({K_a}\) value of \(5.26 \times 1{0^{ - 4}}.\)
Chapter 14: Q14.3-74 E (page 834)
The pH of a \(0.20 - M\) solution of \(HF\) is \(1.92.\) Determine \({K_a}\) for \(HF\) from these data.
A hydrofluoric acid has a \({K_a}\) value of \(5.26 \times 1{0^{ - 4}}.\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is the effect on the concentration of hydrofluoric acid, hydronium ion, and fluoride ion when the following are added to separate solutions of hydrofluoric acid?
\(\begin{aligned}{l}(a)HCl\\(b)KF\\(c)NaCl\\(d)KOH\\(e)HF\end{aligned}\)
The equation for the equilibrium is \[HF(aq) + {H_2}O(l) \rightleftharpoons {H_3}{O^ + }(aq) + {F^ - }(aq)\]
Identify and label the Brønsted-Lowry acid, its conjugate base, the Brønsted-Lowry base, and its conjugate acid in each of the following equations:
\({\rm{\;(a)\;HN}}{{\rm{O}}_3} + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_3}{{\rm{O}}^ + } + {\rm{NO}}_3^ - \)
\({\rm{b) C}}{{\rm{N}}^ - } + {{\rm{H}}_2}{\rm{O}} \to {\rm{HCN}} + {\rm{O}}{{\rm{H}}^ - }\)
\({\rm{\;(c)\;}}{{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4} + {\rm{C}}{{\rm{l}}^ - } \to {\rm{HCl}} + {\rm{HSO}}_4^ - \)
\({\rm{\;(d)\;HSO}}_4^ - + {\rm{O}}{{\rm{H}}^ - } \to {\rm{SO}}_4^{2 - } + {{\rm{H}}_2}{\rm{O}}\)
\({\rm{\;(e)\;}}{{\rm{O}}^{2 - }} + {{\rm{H}}_2}{\rm{O}} \to 2{\rm{O}}{{\rm{H}}^ - }\)
\({\rm{\;(f)\;}}{\left( {{\rm{Cu}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_3}({\rm{OH}})} \right)^ + } + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} \to {\left( {{\rm{Cu}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_4}} \right)^{2 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }}\)
\({\rm{\;(g)\;}}{{\rm{H}}_2}{\rm{S}} + {\rm{NH}}_2^ - \to {\rm{H}}{{\rm{S}}^ - } + {\rm{N}}{{\rm{H}}_3}\)
Explain why the neutralization reaction of a weak acid and a strong base gives a weakly basic solution
Explain why the ionization constant, \({K_a}\), for\({H_2}S{O_4}\) is larger than the ionization constant for \({H_2}S{O_3}\).
From the equilibrium concentrations given, calculate \({K_a}\)for each of the weak acids and \({K_b}\)for each of the weak bases.
\(\begin{aligned}(a)N{H_3}:\left( {O{H^ - }} \right) = 3.1 \times 1{0^{ - 3}}M\left( {NH_4^ + } \right) = 3.1 \times 1{0^{ - 3}}M;\left( {N{H_3}} \right) = 0.533M;\\(b)HN{O_2}:\left( {{H_3}{O^ + }} \right) = 0.011M;\left( {NO_2^ - } \right) = 0.0438M;\left( {HN{O_2}} \right) = 1.07M;\\(c){\left( {C{H_3}} \right)_3}\;N:\left( {{{\left( {C{H_3}} \right)}_3}\;N} \right) = 0.25M;\left( {{{\left( {C{H_3}} \right)}_3}N{H^ + }} \right) = 4.3 \times 1{0^{ - 3}}M;\left( {O{H^ - }} \right) = 4.3 \times 1{0^{ - 3}}M;\\(d)N{H_4} + :\left( {N{H_4} + } \right) = 0.100M;\left( {N{H_3}} \right) = 7.5 \times 1{0^{ - 6}}M;\left( {{H_3}{O^ + }} \right) = 7.5 \times 1{0^{ - 6}}M\end{aligned}\)
\(\begin{aligned}\left( {N{H_3}} \right) = 7.5 \times 1{0^{ - 6}}M\\\left( {{H_3}{O^ + }} \right) = 7.5 \times 1{0^{ - 6}}M\end{aligned}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.