Chapter 14: Q97 E (page 836)
What will be the\(pH\)of a buffer solution prepared from\(0.20\;mol N{H_3}, 0.40\;mol N{H_4}N{O_3}\), and just enough water to give\(1.00\;L\)of solution?
Short Answer
the pH of buffer solution is \(pH = 8.96\)
Chapter 14: Q97 E (page 836)
What will be the\(pH\)of a buffer solution prepared from\(0.20\;mol N{H_3}, 0.40\;mol N{H_4}N{O_3}\), and just enough water to give\(1.00\;L\)of solution?
the pH of buffer solution is \(pH = 8.96\)
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the \(pH\)and the\(pOH\) of each of the following solutions at \(2{5^o}C\) for which the substances ionize completely:
(a)\(0.000259M HCl{O_4}\)
(b)\(0.21M NaOH\)
(c)\(0.000071M Ba{(OH)_2}\)
(d) \(2.5M KOH\)
A buffer solution is prepared from equal volumes of \({\bf{0}}.{\bf{200}}{\rm{ }}{\bf{M}}\) acetic acid and \({\bf{0}}.{\bf{600}}{\rm{ }}{\bf{M}}\) sodium acetate. Use \({\bf{1}}.{\bf{80}}{\rm{ }} \times {\rm{ }}{\bf{1}}{{\bf{0}}^{ - {\bf{5}}}}\) as Ka for acetic acid.
(a) What is the pH of the solution?
(b) Is the solution acidic or basic?
(c) What is the pH of a solution that results when \({\bf{3}}.{\bf{00}}{\rm{ }}{\bf{mL}}\) of \({\bf{0}}.{\bf{034}}{\rm{ }}{\bf{M}}{\rm{ }}{\bf{HCl}}\) is added to \({\bf{0}}.{\bf{200}}{\rm{ }}{\bf{L}}\) of the original buffer?
Explain why the ionization constant, \({K_a}\), for\({H_2}S{O_4}\) is larger than the ionization constant for \({H_2}S{O_3}\).
Identify and label the Brønsted-Lowry acid, its conjugate base, the Brønsted-Lowry base, and its conjugate acid in each of the following equations:
\({\rm{\;(a)\;HN}}{{\rm{O}}_3} + {{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_3}{{\rm{O}}^ + } + {\rm{NO}}_3^ - \)
\({\rm{b) C}}{{\rm{N}}^ - } + {{\rm{H}}_2}{\rm{O}} \to {\rm{HCN}} + {\rm{O}}{{\rm{H}}^ - }\)
\({\rm{\;(c)\;}}{{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4} + {\rm{C}}{{\rm{l}}^ - } \to {\rm{HCl}} + {\rm{HSO}}_4^ - \)
\({\rm{\;(d)\;HSO}}_4^ - + {\rm{O}}{{\rm{H}}^ - } \to {\rm{SO}}_4^{2 - } + {{\rm{H}}_2}{\rm{O}}\)
\({\rm{\;(e)\;}}{{\rm{O}}^{2 - }} + {{\rm{H}}_2}{\rm{O}} \to 2{\rm{O}}{{\rm{H}}^ - }\)
\({\rm{\;(f)\;}}{\left( {{\rm{Cu}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_3}({\rm{OH}})} \right)^ + } + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_6}} \right)^{3 + }} \to {\left( {{\rm{Cu}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_4}} \right)^{2 + }} + {\left( {{\rm{Al}}{{\left( {{{\rm{H}}_2}{\rm{O}}} \right)}_5}({\rm{OH}})} \right)^{2 + }}\)
\({\rm{\;(g)\;}}{{\rm{H}}_2}{\rm{S}} + {\rm{NH}}_2^ - \to {\rm{H}}{{\rm{S}}^ - } + {\rm{N}}{{\rm{H}}_3}\)
What is the conjugate acid of each of the following? What is the conjugate base of each?
\({\rm{a) }}{{\rm{H}}_2}S\)
\({\rm{b) }}{{\rm{H}}_2}{\rm{PO}}_4^ - \)
\({\rm{c) P}}{{\rm{H}}_3}\)
\({\rm{d) }}H{S^ - }\)
\({\rm{(e)HSO}}\;_3^ - \)
\({\rm{\;(f)\;}}{{\rm{H}}_3}{{\rm{O}}_2}^ + \)
\({\rm{\;(g)\;}}{{\rm{H}}_4}{{\rm{N}}_2}\)
\({\rm{\;(h)\;C}}{{\rm{H}}_3}{\rm{OH}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.