Write Lewis structures for \({\rm{N}}{{\rm{F}}_{\rm{3}}}\) and \({\rm{P}}{{\rm{F}}_{\rm{5}}}\). On the basis of hybrid orbitals, explain the fact that \({\rm{N}}{{\rm{F}}_{\rm{3}}}\), \({\rm{P}}{{\rm{F}}_{\rm{3}}}\), and \({\rm{P}}{{\rm{F}}_{\rm{5}}}\) are stable molecules, but \({\rm{N}}{{\rm{F}}_{\rm{5}}}\) does not exist.

Short Answer

Expert verified

Nitrogen has four electron density zones in \({\rm{N}}{{\rm{F}}_{\rm{3}}}\) and phosphorus has four electron density regions in \({\rm{P}}{{\rm{F}}_{\rm{3}}}\) and is \({\rm{s}}{{\rm{p}}^{\rm{3}}}\) hybridised. Nitrogen and phosphorus will have five areas of electron density in \({\rm{N}}{{\rm{F}}_{\rm{5}}}\) and \({\rm{P}}{{\rm{F}}_{\rm{5}}}\), and will need to be \({\rm{s}}{{\rm{p}}^{\rm{3}}}{\rm{d}}\) hybridised, but nitrogen lacks a valence d orbital to accommodate the additional pair of electrons, whereas phosphorus does. So, whereas \({\rm{N}}{{\rm{F}}_{\rm{3}}}\), \({\rm{P}}{{\rm{F}}_{\rm{3}}}\), and \({\rm{P}}{{\rm{F}}_{\rm{5}}}\) are stable molecules, \({\rm{N}}{{\rm{F}}_{\rm{5}}}\) does not.

Step by step solution

01

Define molecule

A molecule is the smallest unit of a substance that holds the compound's chemical characteristics. Molecules are made up of atoms arranged in groups.

02

Explanation

\({\rm{N}}{{\rm{F}}_{\rm{3}}}\)and\({\rm{P}}{{\rm{F}}_{\rm{5}}}\)Lewis structures,


Phosphorus in \({\rm{P}}{{\rm{F}}_{\rm{3}}}\) and nitrogen in \({\rm{N}}{{\rm{F}}_{\rm{3}}}\) contain four electron density areas and are \({\rm{s}}{{\rm{p}}^{\rm{3}}}\) hybridised. Nitrogen and phosphorus will have five areas of electron density in \({\rm{N}}{{\rm{F}}_{\rm{5}}}\) and \({\rm{P}}{{\rm{F}}_{\rm{5}}}\), and will need to be \({\rm{s}}{{\rm{p}}^{\rm{3}}}{\rm{d}}\) hybridised, but nitrogen lacks a valence d orbital to accommodate the additional pair of electrons, whereas phosphorus does. So \({\rm{N}}{{\rm{F}}_{\rm{3}}}\), \({\rm{P}}{{\rm{F}}_{\rm{3}}}\), and \({\rm{P}}{{\rm{F}}_{\rm{5}}}\) are all stable compounds, but \({\rm{N}}{{\rm{F}}_{\rm{5}}}\) isn't.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the carbonate ion, \({\rm{C}}{{\rm{O}}_{\rm{3}}}^{{\rm{2 - }}}\), draw all of the resonance structures. Identify which orbitals overlap to create each bond.

For each of the following molecules, indicate the hybridization requested and whether or not the electrons will be delocalized: (a) ozone (\({{\rm{O}}_{\rm{3}}}\)) central \({\rm{O}}\) hybridization (b) carbon dioxide (\({\rm{C}}{{\rm{O}}_{\rm{2}}}\)) central \({\rm{C}}\) hybridization (c) nitrogen dioxide (\({\rm{N}}{{\rm{O}}_{\rm{2}}}\)) central \({\rm{N}}\) hybridization (d) phosphate ion (\({\rm{P}}{{\rm{O}}_{\rm{4}}}^{{\rm{3 - }}}\)) central \({\rm{P}}\) hybridization.

Another acid in acid rain is nitric acid, HNO3, which is produced by the reaction of nitrogen dioxide, NO2, with atmospheric water vapor. What is the hybridization of the nitrogen atom in NO2? (Note: the lone electron on nitrogen occupies a hybridized orbital just as a lone pair would.)

Predict the valence electron molecular orbital configurations for the following, and state whether they will be stable or unstable ions.

(a) \({\rm{N}}{{\rm{a}}_{\rm{2}}}^{{\rm{2 + }}}\)

(b) \({\rm{M}}{{\rm{g}}_{\rm{2}}}^{{\rm{2 + }}}\)

(c) \({\rm{A}}{{\rm{l}}_{\rm{2}}}^{{\rm{2 + }}}\)

(d) \({\rm{S}}{{\rm{i}}_{\rm{2}}}^{{\rm{2 + }}}\)

(e) \({\rm{P}}_{\rm{2}}^{{\rm{2 + }}}\)

(f) \({{\rm{S}}_{\rm{2}}}^{{\rm{2 + }}}\)

(g) \({{\rm{F}}_{\rm{2}}}^{{\rm{2 + }}}\)

(h) \({\rm{A}}{{\rm{r}}_{\rm{2}}}^{{\rm{2 + }}}\)

Can a molecule with an odd number of electrons ever be diamagnetic? Explain why or why not.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free