Predict the valence electron molecular orbital configurations for the following, and state whether they will be stable or unstable ions.

(a) \({\rm{N}}{{\rm{a}}_{\rm{2}}}^{{\rm{2 + }}}\)

(b) \({\rm{M}}{{\rm{g}}_{\rm{2}}}^{{\rm{2 + }}}\)

(c) \({\rm{A}}{{\rm{l}}_{\rm{2}}}^{{\rm{2 + }}}\)

(d) \({\rm{S}}{{\rm{i}}_{\rm{2}}}^{{\rm{2 + }}}\)

(e) \({\rm{P}}_{\rm{2}}^{{\rm{2 + }}}\)

(f) \({{\rm{S}}_{\rm{2}}}^{{\rm{2 + }}}\)

(g) \({{\rm{F}}_{\rm{2}}}^{{\rm{2 + }}}\)

(h) \({\rm{A}}{{\rm{r}}_{\rm{2}}}^{{\rm{2 + }}}\)

Short Answer

Expert verified

(a) The ion\({\rm{N}}{{\rm{a}}_2}^{2 + }:{\left( {{\sigma _{3s}}} \right)^0}\)is unstable.

(b) The ion\({\rm{M}}{{\rm{g}}_2}^{2 + }:{\left( {{\sigma _{3s}}} \right)^2}\)is stable.

(c) The ion\({\rm{A}}{{\rm{l}}_2}^{2 + }:{\left( {{\sigma _{3s}}} \right)^2}{\left( {\sigma _{3s}^*} \right)^2}\)is unstable.

(d) The ion\({\rm{S}}{{\rm{i}}_2}^{2 + }:{\left( {{\sigma _{3s}}} \right)^2}{\left( {\sigma _{3s}^*} \right)^2}{\left( {{\pi _{3py}},{\pi _{3pz}}} \right)^2}\)is stable.

(e) The ion\({{\bf{P}}_2}^{2 + }:{\left( {{\sigma _{3s}}} \right)^2}{\left( {\sigma _{3s}^*} \right)^2}{\left( {{\pi _{3py}},{\pi _{3pz}}} \right)^4}\)is stable.

(f) The ion\({{\rm{S}}_2}^{2 + }:{\left( {{\sigma _{3s}}} \right)^2}{\left( {\sigma _{3s}^*} \right)^2}{\left( {{\sigma _{3px}}} \right)^2}{\left( {{\pi _{3py}},{\pi _{3pz}}} \right)^4}\)is stable.

(g) The ion\({{\rm{F}}_2}^{2 + }:{\left( {{\sigma _{2s}}} \right)^2}{\left( {\sigma _{2s}^*} \right)^2}{\left( {{\sigma _{2px}}} \right)^2}{\left( {{\pi _{2py}},{\pi _{2pz}}} \right)^4}{\left( {\pi _{2py}^*,\pi _{2pz}^*} \right)^2}\)is stable.

(h) The ion \({{\mathop{\rm Ar}\nolimits} _2}^{2 + }:{\left( {{\sigma _{3s}}} \right)^2}{\left( {\sigma _{3s}^*} \right)^2}{\left( {{\sigma _{3px}}} \right)^2}{\left( {{\pi _{3py}},{\pi _{3pz}}} \right)^4}{\left( {\pi _{2py}^*,\pi _{2pz}^*} \right)^4}\) is stable.

Step by step solution

01

Definition of bonding molecular orbital configuration

Bonding orbitals are used in molecular orbital theory (MO) to describe the attractive interactions between the atomic orbitals of two or more atoms in a molecule.

02

The valence electron molecular orbital configuration of Na22+ and Mg22+.

(a)\({\rm{N}}{{\rm{a}}_{\rm{2}}}^{{\rm{2 + }}}\):

Molecular orbital configuration:

\({\left( {{\sigma _{1s}}} \right)^2}{\left( {{\sigma _{2s}}} \right)^2}{\left( {\sigma _{2s}^*} \right)^2}{\left( {{\sigma _{2px}}} \right)^2}{\left( {{\pi _{2py}},{\pi _{2pz}}} \right)^4}{\left( {\pi _{2py}^*,\pi _{2pz}^*} \right)^4}{\left( {\sigma _{2px}^*} \right)^2}{\left( {{\sigma _{3s}}} \right)^0}\)

Valence electron molecular orbital configuration:\({\left( {{\sigma _{3s}}} \right)^0}\)

The ion is unstable

(b)\({\rm{M}}{{\rm{g}}_2}^{2 + }\): Molecular orbital configuration:

\({\left( {{\sigma _{1s}}} \right)^2}{\left( {{\sigma _{2s}}} \right)^2}{\left( {\sigma _{2s}^*} \right)^2}{\left( {{\sigma _{2px}}} \right)^2}{\left( {{\pi _{2py}},{\pi _{2pz}}} \right)^4}{\left( {\pi _{2py}^*,\pi _{2pz}^*} \right)^4}{\left( {\sigma _{2px}^*} \right)^2}{\left( {{\sigma _{3s}}} \right)^2}\).

Valence electron molecular orbital configuration:\({\left( {{\sigma _{3s}}} \right)^2}\).

The ion is stable

03

The valence electron molecular orbital configuration of Al22+ and Si22-.

(c)\({\rm{A}}{{\rm{l}}_2}^{2 + }\): Molecular orbital configuration:

\({\left( {{\sigma _{1s}}} \right)^2}{\left( {{\sigma _{2s}}} \right)^2}{\left( {\sigma _{2s}^*} \right)^2}{\left( {{\sigma _{2px}}} \right)^2}{\left( {{\pi _{2py}},{\pi _{2pz}}} \right)^4}{\left( {\pi _{2py}^*,\pi _{2pz}^*} \right)^4}{\left( {\sigma _{2px}^*} \right)^2}{\left( {{\sigma _{3s}}} \right)^2}\)

Valence electron molecular orbital configuration:

\({\left( {{\sigma _{3s}}} \right)^2}{\left( {\sigma _{3s}^*} \right)^2}\)

The ion is unstable.

(d)\({\rm{S}}{{\rm{i}}_2}^{2 + }\): Molecular orbital configuration:

\({\left( {{\sigma _{1s}}} \right)^2}{\left( {{\sigma _{2s}}} \right)^2}{\left( {\sigma _{2s}^*} \right)^2}{\left( {{\sigma _{2px}}} \right)^2}{\left( {{\pi _{2py}},{\pi _{2pz}}} \right)^4}{\left( {\pi _{2py}^*,\pi _{2pz}^*} \right)^4}{\left( {\sigma _{2px}^*} \right)^2}{\left( {{\sigma _{3s}}} \right)^2}{\left( {{\pi _{3py}},{\pi _{3pz}}} \right)^2}\).

Valence electron molecular orbital configuration:\({\left( {{\sigma _{3s}}} \right)^2}{\left( {\sigma _{3s}^*} \right)^2}{\left( {{\pi _{3py}},{\pi _{3pz}}} \right)^2}\).

The ion is stable.

04

The valence electron molecular orbital configuration of P22+ and S22+.

(e)\({{\rm{P}}_2}^{2 + }\): Molecular orbital configuration:

\({\left( {{\sigma _{1s}}} \right)^2}{\left( {{\sigma _{2s}}} \right)^2}{\left( {\sigma _{2s}^*} \right)^2}{\left( {{\sigma _{2px}}} \right)^2}{\left( {{\pi _{2py}},{\pi _{2pz}}} \right)^4}{\left( {\pi _{2py}^*,\pi _{2pz}^*} \right)^4}{\left( {\sigma _{2px}^*} \right)^2}{\left( {{\sigma _{3s}}} \right)^2}{\left( {{\pi _{3py}},{\pi _{3pz}}} \right)^4}\)

Valence electron molecular orbital configuration:\({\left( {{\sigma _{3s}}} \right)^2}{\left( {\sigma _{3s}^*} \right)^2}{\left( {{\pi _{3py}},{\pi _{3pz}}} \right)^4}\)

The ion is stable.

(f)\({{\rm{S}}_2}^{2 + }\): Molecular orbital configuration:

\({\left( {{\sigma _{1s}}} \right)^2}{\left( {{\sigma _{2s}}} \right)^2}{\left( {\sigma _{2s}^*} \right)^2}{\left( {{\sigma _{2px}}} \right)^2}{\left( {{\pi _{2py}},{\pi _{2pz}}} \right)^4}{\left( {\pi _{2py}^*,\pi _{2pz}^*} \right)^4}{\left( {\sigma _{2px}^*} \right)^2}{\left( {{\sigma _{3s}}} \right)^2}{\left( {{\sigma _{3px}}} \right)^2}{\left( {{\pi _{3py}},{\pi _{3pz}}} \right)^4}\).

Valence electron molecular orbital configuration:\({\left( {{\sigma _{3s}}} \right)^2}{\left( {\sigma _{3s}^*} \right)^2}{\left( {{\sigma _{3px}}} \right)^2}{\left( {{\pi _{3py}},{\pi _{3pz}}} \right)^4}\).

The ion is stable.

05

The valence electron molecular orbital configuration of F22+ and Ar22+

(g)\({{\rm{F}}_2}^{2 + }\): Molecular orbital configuration:

\({\left( {{\sigma _{1s}}} \right)^2}{\left( {{\sigma _{2s}}} \right)^2}{\left( {\sigma _{2s}^*} \right)^2}{\left( {{\sigma _{2px}}} \right)^2}{\left( {{\pi _{2py}},{\pi _{2pz}}} \right)^4}{\left( {\pi _{2py}^*,\pi _{2pz}^*} \right)^2}\)

Valence electron molecular orbital configuration:

\({\left( {{\sigma _{2s}}} \right)^2}{\left( {\sigma _{2s}^*} \right)^2}{\left( {{\sigma _{2px}}} \right)^2}{\left( {{\pi _{2py}},{\pi _{2pz}}} \right)^4}{\left( {\pi _{2py}^*,\pi _{2pz}^*} \right)^2}\)

The ion is stable.

(h)\({\rm{A}}{{\rm{r}}_2}^{2 + }\): Valence electron molecular orbital configuration:

\({\left( {{\sigma _{3s}}} \right)^2}{\left( {\sigma _{3s}^*} \right)^2}{\left( {{\sigma _{3px}}} \right)^2}{\left( {{\pi _{3py}},{\pi _{3pz}}} \right)^4}{\left( {\pi _{2py}^*,\pi _{2pz}^*} \right)^4}\)

The ion is stable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using the MO diagrams, predict the bond order for the stronger bond in each pair:

B2or B2+

F2orF2+

O2 or O22+

C2+or C2-

Describe the molecular geometry and hybridization of the N, P, or S atoms in each of the following compounds. (a) \({{\rm{H}}_{\rm{3}}}{\rm{P}}{{\rm{O}}_{\rm{4}}}\), phosphoric acid, used in cola soft drinks (b) \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{N}}{{\rm{O}}_{\rm{3}}}\) , ammonium nitrate, a fertilizer and explosive (c) \({{\rm{S}}_{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}\), disulfur dichloride, used in vulcanizing rubber (d) \({{\rm{K}}_{\rm{4}}}{\rm{[}}{{\rm{O}}_{\rm{3}}}{\rm{POP}}{{\rm{O}}_{\rm{3}}}{\rm{]}}\), potassium pyrophosphate, an ingredient in some toothpastes

Write Lewis structures for \({\rm{N}}{{\rm{F}}_{\rm{3}}}\) and \({\rm{P}}{{\rm{F}}_{\rm{5}}}\). On the basis of hybrid orbitals, explain the fact that \({\rm{N}}{{\rm{F}}_{\rm{3}}}\), \({\rm{P}}{{\rm{F}}_{\rm{3}}}\), and \({\rm{P}}{{\rm{F}}_{\rm{5}}}\) are stable molecules, but \({\rm{N}}{{\rm{F}}_{\rm{5}}}\) does not exist.

Calculate the bond order for an ion with this configuration: \({\left( {{{\bf{\sigma }}_{{\bf{2s}}}}} \right)^{\bf{2}}}{\left( {{\bf{\sigma }}_{{\bf{2s}}}^{\bf{*}}} \right)^{\bf{2}}}{\left( {{{\bf{\sigma }}_{{\bf{2px}}}}} \right)^{\bf{2}}}{\left( {{{\bf{\pi }}_{{\bf{2py}}}}{\bf{,}}{{\bf{\pi }}_{{\bf{2pz}}}}} \right)^{\bf{4}}}{\left( {{\bf{\pi }}_{{\bf{2py}}}^{\bf{*}}{\bf{,\pi }}_{{\bf{2pz}}}^{\bf{*}}} \right)^{\bf{3}}}\).

Label the molecular orbital shown as σ or Π, bonding or antibonding, and indicate where the node occurs.


See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free