Chapter 8: Q44E (page 451)
Which of the period 2 homonuclear diatomic molecules are predicted to be paramagnetic?
Short Answer
The period 2 homonuclear diatomic molecules are predicted to be paramagnetic are B2 and O2.
Chapter 8: Q44E (page 451)
Which of the period 2 homonuclear diatomic molecules are predicted to be paramagnetic?
The period 2 homonuclear diatomic molecules are predicted to be paramagnetic are B2 and O2.
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the distribution of electron density in the bonding and antibonding molecular orbitals formed from two S orbitals and from two P orbitals.
For the molecule allene, \({{\rm{H}}_{\rm{2}}}{\rm{C = C = C}}{{\rm{H}}_{\rm{2}}}\) , give the hybridization of each carbon atom. Will the hydrogen atoms be in the same plane or perpendicular planes?
Predict the valence electron molecular orbital configurations for the following, and state whether they will be stable or unstable ions.
(a) \({\rm{N}}{{\rm{a}}_{\rm{2}}}^{{\rm{2 + }}}\)
(b) \({\rm{M}}{{\rm{g}}_{\rm{2}}}^{{\rm{2 + }}}\)
(c) \({\rm{A}}{{\rm{l}}_{\rm{2}}}^{{\rm{2 + }}}\)
(d) \({\rm{S}}{{\rm{i}}_{\rm{2}}}^{{\rm{2 + }}}\)
(e) \({\rm{P}}_{\rm{2}}^{{\rm{2 + }}}\)
(f) \({{\rm{S}}_{\rm{2}}}^{{\rm{2 + }}}\)
(g) \({{\rm{F}}_{\rm{2}}}^{{\rm{2 + }}}\)
(h) \({\rm{A}}{{\rm{r}}_{\rm{2}}}^{{\rm{2 + }}}\)
Describe the molecular geometry and hybridization of the N, P, or S atoms in each of the following compounds. (a) \({{\rm{H}}_{\rm{3}}}{\rm{P}}{{\rm{O}}_{\rm{4}}}\), phosphoric acid, used in cola soft drinks (b) \({\rm{N}}{{\rm{H}}_{\rm{4}}}{\rm{N}}{{\rm{O}}_{\rm{3}}}\) , ammonium nitrate, a fertilizer and explosive (c) \({{\rm{S}}_{\rm{2}}}{\rm{C}}{{\rm{l}}_{\rm{2}}}\), disulfur dichloride, used in vulcanizing rubber (d) \({{\rm{K}}_{\rm{4}}}{\rm{[}}{{\rm{O}}_{\rm{3}}}{\rm{POP}}{{\rm{O}}_{\rm{3}}}{\rm{]}}\), potassium pyrophosphate, an ingredient in some toothpastes
The bond energy of a C–C single bond averages \({\rm{347 kJ mo}}{{\rm{l}}^{{\rm{ - 1}}}}\); that of a
C ≡ C triple bond averages \({\rm{839 kJ mo}}{{\rm{l}}^{{\rm{ - 1}}}}\). Explain why the triple bond is not three times as strong as a single bond.
What do you think about this solution?
We value your feedback to improve our textbook solutions.