Question: Using the bond energies in Table \({\rm{7}}{\rm{.2}}\), determine the approximate enthalpy change for each of the following reactions:

(a) \({\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(g) + 3}}{{\rm{F}}_{\rm{2}}}{\rm{(g)}} \to {\rm{2Cl}}{{\rm{F}}_{\rm{3}}}{\rm{(g)}}\)

(b) \({{\rm{H}}_{\rm{2}}}{\rm{C = C}}{{\rm{H}}_{\rm{2}}}{\rm{(g) + }}{{\rm{H}}_{\rm{2}}}{\rm{(g)}} \to {{\rm{H}}_{\rm{3}}}{\rm{CC}}{{\rm{H}}_{\rm{3}}}{\rm{(g)}}\)

(c) \({\rm{2}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{6}}}{\rm{(g) + 7}}{{\rm{O}}_{\rm{2}}}{\rm{(g)}} \to {\rm{4C}}{{\rm{O}}_{\rm{2}}}{\rm{(g) + 6}}{{\rm{H}}_{\rm{2}}}{\rm{O(g)}}\)

Short Answer

Expert verified

(a) For the reaction \({\rm{C}}{{\rm{l}}_{\rm{2}}}{\rm{(g) + 3}}{{\rm{F}}_{\rm{2}}}{\rm{(g)}} \to {\rm{2Cl}}{{\rm{F}}_{\rm{3}}}{\rm{(g)}}\), the value for enthalpy change is \({\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = - 564\;kJ}}\).

(b) For the reaction \({{\rm{H}}_{\rm{2}}}{\rm{C = C}}{{\rm{H}}_{\rm{2}}}{\rm{(g) + }}{{\rm{H}}_{\rm{2}}}{\rm{(g)}} \to {{\rm{H}}_{\rm{3}}}{\rm{CC}}{{\rm{H}}_{\rm{3}}}{\rm{(g)}}\), the value for enthalpy change is \({\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = - 128\;kJ}}\).

(c) For the reaction \({\rm{2}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{6}}}{\rm{(g) + 7}}{{\rm{O}}_{\rm{2}}}{\rm{(g)}} \to {\rm{4C}}{{\rm{O}}_{\rm{2}}}{\rm{(g) + 6}}{{\rm{H}}_{\rm{2}}}{\rm{O(g)}}\), the value for enthalpy change is \({\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = - 2345\;kJ}}\).

Step by step solution

01

Concept Introduction

Bond energy is a measure of the bond strength in a chemical bond. The average value of bond-dissociation energy for all bonds of the same type in gas phase within the same chemical species gives the value of bond energy.

02

Enthalpy Change for first reaction

(a)

Bond Energy for\({\rm{Cl - Cl}}\)is:\({\rm{243 kJ/mol}}\)

Bond Energy for\({\rm{F - F}}\)is:\({\rm{160 kJ/mol}}\)

Bond Energy for \({\rm{Cl - F}}\) is: \({\rm{255 kJ/mol}}\)

Calculate the enthalpy change according to the reaction –

\(\begin{array}{c}{\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = }}\sum {{{\rm{D}}_{{\rm{bonds broken }}}}} {\rm{ - }}\sum {{{\rm{D}}_{{\rm{bonds formed }}}}} \\{\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = 2}}{{\rm{D}}_{{\rm{Cl - Cl}}}}{\rm{ + 3}}{{\rm{D}}_{{\rm{F - F}}}}{\rm{ - 6}}{{\rm{D}}_{{\rm{Cl - F}}}}\\{\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = }}2(243) + 3(160) - 6(255) = {\rm{ - 564\;kJ}}\end{array}\)

Therefore, the enthalpy change is \({\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = - 564\;kJ}}\).

03

 Step 3: Enthalpy Change for second reaction

(b)

Bond Energy for\({\rm{C = C}}\)is:\({\rm{611 kJ/mol}}\)

Bond Energy for\({\rm{C - H}}\)is:\({\rm{415 kJ/mol}}\)

Bond Energy for\({\rm{H - H}}\)is:\({\rm{436 kJ/mol}}\)

Bond Energy for\({\rm{C - C}}\)is:\({\rm{345 kJ/mol}}\)

Calculate the enthalpy change according to the reaction –

\(\begin{array}{l}{\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = }}\sum {{{\rm{D}}_{{\rm{bonds broken }}}}} {\rm{ - }}\sum {{{\rm{D}}_{{\rm{bonds formed }}}}} \\{\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = }}{{\rm{D}}_{{\rm{C = C}}}}{\rm{ + 4}}{{\rm{D}}_{{\rm{C - H}}}}{\rm{ + }}{{\rm{D}}_{{\rm{H - H}}}}{\rm{ - }}{{\rm{D}}_{{\rm{C - C}}}}{\rm{ - 6}}{{\rm{D}}_{{\rm{C - H}}}}\\{\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = 611 + 4(415) + 436 - 345 - 6(415) = - 128\;kJ}}\end{array}\)

Therefore, the enthalpy change is \({\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = - 128\;kJ}}\).

04

Enthalpy Change for third reaction

(c)

Bond Energy for\({\rm{C - C}}\)is:\({\rm{345 kJ/mol}}\)

Bond Energy for\({\rm{C - H}}\)is:\({\rm{415 kJ/mol}}\)

Bond Energy for\({\rm{O = O}}\)is:\({\rm{498 kJ/mol}}\)

Bond Energy for\({\rm{C = O}}\)is:\({\rm{741 kJ/mol}}\)

Bond Energy for\({\rm{O - H}}\)is:\({\rm{464 kJ/mol}}\)

Calculate the enthalpy change according to the reaction –

\(\begin{array}{l}{\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = }}\sum {{{\rm{D}}_{{\rm{bonds broken }}}}} {\rm{ - }}\sum {{{\rm{D}}_{{\rm{bonds formed }}}}} \\{\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = 2}}{{\rm{D}}_{{\rm{C - C}}}}{\rm{ + 12}}{{\rm{D}}_{{\rm{C - H}}}}{\rm{ + 7}}{{\rm{D}}_{{\rm{O = O}}}}{\rm{ - 8}}{{\rm{D}}_{{\rm{C = O}}}}{\rm{ + 12}}{{\rm{D}}_{{\rm{O - H}}}}\\{\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = 2(345) + 12(415) + 7(498) - 8(741) - 12(464) = - 2345\;kJ}}\end{array}\)

Therefore, the enthalpy change is \({\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = - 2345\;kJ}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The lattice energy of \({\rm{KF}}\) is \({\rm{794kJ/mol}}\), and the interionic distance is \({\rm{269 pm}}\). The \({\rm{Na - F}}\) distance in \({\rm{NaF}}\), which has the same structure as \({\rm{KF}}\), is \({\rm{231 pm}}\). Which of the following values is the closest approximation of the lattice energy of \({\rm{NaF}}\): \({\rm{682 kJ/mol, 794 kJ/mol, 924 kJ/mol, 1588 kJ/mol,}}\) or \({\rm{3175 kJ/mol}}\)? Explain your answer.

Which atoms can bond to sulfur so as to produce a positive partial charge on the sulfur atom?

From its position in the periodic table, determine which atom in each pair is more electronegative: (a)\({\rm{Br or Cl}}\)(b)\({\rm{N or O}}\)(c)\({\rm{S or O}}\)(d)\({\rm{P or S}}\)(e)\({\rm{Si or N}}\)(f)\({\rm{Ba or P}}\)(g)\({\rm{N or K}}\).

Which of the following molecules and ions contain polar bonds? Which of these molecules and ions have dipole moments?

  1. \({\rm{Cl}}{{\rm{F}}_{\rm{5}}}\)
  2. \({\rm{Cl}}{{\rm{O}}_{\rm{2}}}{\rm{ - }}\)
  3. \({\rm{TeC}}{{\rm{l}}_{\rm{4}}}^{{\rm{2 - }}}\)
  4. \({\rm{PC}}{{\rm{l}}_{\rm{3}}}\)
  5. \({\rm{Se}}{{\rm{F}}_{\rm{4}}}\)
  6. \({\rm{P}}{{\rm{H}}_{\rm{2}}}^{\rm{ - }}\)
  7. \({\rm{Xe}}{{\rm{F}}_{\rm{2}}}\)

Use the Molecule Shape simulator (http://openstaxcollege.org/l/16MolecShape) to build a molecule. Starting with the central atom, click on the double bond to add one double bond. Then add one single bond and one lone pair. Rotate the molecule to observe the complete geometry. Name the electron group geometry and molecular structure and predict the bond angle. Then click the check boxes at the bottom and right of the simulator to check your answers.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free