Question: Using the standard enthalpy of formation data in Appendix G, calculate the bond energy of the carbon-sulphur double bond in \({\rm{C}}{{\rm{S}}_{\rm{2}}}\).

Short Answer

Expert verified

Using the standard enthalpy of formation of \({\rm{C}}{{\rm{S}}_{\rm{2}}}{\rm{(g)}}\), the bond energy is determined as \({\rm{578}}{\rm{.7\;kJ}}\).

Step by step solution

01

Concept Introduction

Bond energy, also known as mean bond enthalpy or average bond enthalpy in chemistry, is a measure of the bond strength.It is the energy needed to dissociate the bonds into atoms.

02

Reactions and their Enthalpy

The reactions with their enthalpy values are –

\(\begin{array}{*{20}{l}}{{\rm{C}}{{\rm{S}}_{\rm{2}}}{\rm{(g)}} \to {\rm{C( graphite ) + 2\;S(s)}}}&{{\rm{\Delta H}}_{\rm{1}}^{\rm{^\circ }}{\rm{ = \Delta H}}_{{\rm{f}}\left( {{\rm{C}}{{\rm{S}}_{\rm{2}}}{\rm{(g)}}} \right)}^{\rm{^\circ }}}\\{{\rm{C(graphite)}} \to {\rm{C(g)}}}&{{\rm{\Delta H}}_{\rm{2}}^{\rm{^\circ }}{\rm{ = \Delta H}}_{{\rm{f(Cl)(g))}}}^{\rm{^\circ }}}\\{{\rm{2\;S(s)}} \to {\rm{2\;S(9)}}}&{{\rm{2\Delta H}}_{\rm{3}}^{\rm{^\circ }}{\rm{ = 2\Delta H}}_{{\rm{f(S(g))}}}^{\rm{^\circ }}}\end{array}\)

03

Bond Energy Calculation

The net reaction is –

\({\rm{C}}{{\rm{S}}_{\rm{2}}}{\rm{(g)}} \to {\rm{C(graphite) + 2\;S(g)}}\;\)

\(\begin{array}{c}{\rm{\Delta H}}_{{\rm{298}}}^{\rm{^\circ }}{\rm{ = \Delta }}{{\rm{H}}_{\rm{1}}}^{\rm{^\circ }}{\rm{ + \Delta H}}_{\rm{2}}^{\rm{^\circ }}{\rm{ + 2\Delta }}{{\rm{H}}_{\rm{3}}}^{\rm{^\circ }}\\{{\rm{D}}_{{\rm{C}}{{\rm{S}}_{\rm{2}}}}}{\rm{ = \Delta }}{{\rm{H}}^{\rm{^\circ }}}_{{\rm{298}}}{\rm{ = - \Delta }}{{\rm{H}}^{\rm{^\circ }}}_{{\rm{f}}\left( {{\rm{C}}{{\rm{S}}_{\rm{2}}}{\rm{(g)}}} \right)}{\rm{ + \Delta H}}_{{\rm{f(C(g))}}}^{\rm{^\circ }}{\rm{ + 2\Delta }}{{\rm{H}}^{\rm{^\circ }}}_{{\rm{f(S(g))}}}\end{array}\)

The bond energy is calculated as –

\(\begin{array}{c}{{\rm{D}}_{{\rm{C}}{{\rm{S}}_{\rm{2}}}}}{\rm{ = - 116}}{\rm{.9 + 716}}{\rm{.681 + 2(278}}{\rm{.81)}}\\{\rm{ = 1157}}{\rm{.4\;kJ}}{{\rm{D}}_{{\rm{C = S}}}}\\{\rm{ = }}\frac{{{\rm{1157}}{\rm{.4}}}}{{\rm{2}}}\\{\rm{ = 578}}{\rm{.7\;kJ}}\end{array}\)

Therefore, the value for bond energy is \({\rm{578}}{\rm{.7\;kJ}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Correct the following statement: “The bonds in solid\({\text{PbC}}{{\text{I}}_{\text{2}}}\)are ionic; the bond in a\({\text{HCl}}\)molecule is covalent. Thus, all of the valence electrons in\({\text{PbC}}{{\text{I}}_{\text{2}}}\)are located on the\({\text{C}}{{\text{I}}^{\text{ - }}}\)ions, and all of the valence electrons in a\({\text{HCl}}\)molecule are shared between the\({\text{H}}\)and\({\text{CI}}\)atoms.”

There are three possible structures for \({\rm{PC}}{{\rm{l}}_{\rm{2}}}{\rm{\;}}{{\rm{F}}_{\rm{3}}}\)with phosphorus as the central atom. Draw them and discuss how measurements of dipole moments could help distinguish among them.

Use the Molecule Shape simulator (http://openstaxcollege.org/l/16MolecShape) to explore real molecules. On the Real Molecules tab, select “model” mode and S2O. What is the model bond angle? Explain whether the “real” bond angle should be larger or smaller than the ideal model angle.

The lattice energy of \({\rm{LiF}}\) is \({\rm{1023 kJ/mol}}\), and the \({\rm{Li - F}}\) distance is \({\rm{201 pm}}\). \({\rm{MgO}}\) crystallizes in the same structure as \({\rm{LiF}}\) but with a \({\rm{Mg - O}}\) distance of \({\rm{205 pm}}\). Which of the following values most closely approximates the lattice energy of \({\rm{MgO}}\): \({\rm{256 kJ/mol, 512 kJ/mol, 1023 kJ/mol, 2046 kJ/mol,}}\) or \({\rm{4008 kJ/mol}}\)? Explain your choice.

Question: When a molecule can form two different structures, the structure with the stronger bonds is usually the more stable form. Use bond energies to predict the correct structure of the hydroxylamine molecule:

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free