Determine \({\bf{\Delta G}}\) and \({\bf{\Delta G}}^\circ \) for each of the reactions in the previous problem.

Short Answer

Expert verified
  1. \({\rm{Hg}}({\rm{l}}) + {{\rm{S}}^{2 - }}({\rm{aq}},0.10{\rm{M}}) + 2{\rm{A}}{{\rm{g}}^ + }({\rm{aq}},0.025{\rm{M}}) \to 2{\rm{Ag}}({\rm{s}}) + {\rm{HgS}}({\rm{s}})\). Standard cell potential is \(1.50\;{\rm{V}}\). Cell potential at the given condition is \(1.435\;{\rm{V}}\).\(\Delta {G^0}{\rm{is}} - 289.5\;{\rm{kJ and }}\Delta G{\rm{ is }} - 276.955\;{\rm{kJ}}\)
  2. \(2{\rm{Al}}({\rm{s}}) + 3{\rm{N}}{{\rm{i}}^{ + 2}}({\rm{aq}},0.25{\rm{M}}) \to 2{\rm{A}}{{\rm{l}}^{3 + }}({\rm{aq}},0.015{\rm{M}}) + 3{\rm{Ni}}({\rm{s}})\).Standard cell potential is \(1.405\;{\rm{V}}\). Cell potential at the given condition is \(1.423\;{\rm{V}}\). \(\Delta {G^0}\) is \( - 813.495\;{\rm{kJ}}\) and \(\Delta G\) is \( - 823.917\;{\rm{kJ}}.\)
  3. \(6{\rm{B}}{{\rm{r}}^ - }({\rm{aq}},1.0{\rm{M}}) + 2{\rm{A}}{{\rm{l}}^{ + 3}}({\rm{aq}},0.023{\rm{M}}) \to 3{\rm{B}}{{\rm{r}}_2}({\rm{l}},0.11{\rm{M}}) + 2{\rm{Al}}({\rm{s}})\). Standard cell potential is \( - 2.749\;{\rm{V}}\). Cell potential at the given condition is \( - 2.7622\;{\rm{V}}\). \(\Delta {G^0}\) is \(1591.671\;{\rm{kJ}}\) and \(\Delta G\) is \(1599.314\;{\rm{kJ}}.\)

Step by step solution

01

Define standard cell potential

The electrical work of a cell at standard conditions with\(\Delta {G^{\rm{o}}}\), we get

\(\begin{aligned}{l}\Delta {G^o} = - nFE_{cell}^o\\F = {\rm{ Faraday costant }}(96,500{\rm{C}}/{\rm{mol}})\end{aligned}\)

For positive value of standard cell potential, the reaction is spontaneous and it is non-spontaneous for negative value of the standard cell potential.

02

a) Determine the standard cell potential

\({\rm{Hg}}({\rm{l}}) + {{\rm{S}}^{2 - }}({\rm{aq}},0.10{\rm{M}}) + 2{\rm{A}}{{\rm{g}}^ + }({\rm{aq}},0.025{\rm{M}}) \to 2{\rm{Ag}}({\rm{s}}) + {\rm{HgS}}({\rm{s}})\)

According to the above cell reaction silver is the cathode and mercury is the anode.

So cell potential at standard condition

\(\begin{aligned}{}& = E_{{\rm{cathode }}}^0 - E_{{\rm{anode }}}^0\\ &= \{ 0.80 - ( - 0.70)\} {\rm{V}}\\ &= 1.50\;{\rm{V}}\end{aligned}\)

Cell potential at the given condition is obtained using Nernst's equation.

So we can write,

\(\begin{aligned}{}{{\rm{E}}_{{\rm{cell }}}} &= {{\rm{E}}^0}{\rm{ cell }} - (0.059/2) \times \log \left\{ {1/\left( {0.1 \times {{0.025}^2}} \right)} \right\}\\ &= 1.50\;{\rm{V}} - 0.0295 \times \log 160\;{\rm{V}}\\ &= (1.50 - 0.0295 \times 2.204){\rm{V}}\\ &= (1.50 - 0.0650){\rm{V}}\\ &= 1.435\;{\rm{V}}\end{aligned}\)

As standard cell potential and potential at given conditions are positive so the reaction will be spontaneous.\(\Delta {G^0} = - n \times F \times E_{cell}^0 = - 2 \times 96500 \times 1.5\;{\rm{J}} = - 289.5\;{\rm{kJ}}\)

\(\Delta G = n \times F \times {E_0}cell = - 2 \times 96500 \times 1.435\;{\rm{J}} = - 276.955\;{\rm{kJ}}\)

03

b) Determine the standard cell potential

\(2{\rm{Al}}({\rm{s}}) + 3{\rm{N}}{{\rm{i}}^{ + 2}}({\rm{aq}},0.25{\rm{M}}) \to 2{\rm{A}}{{\rm{l}}^{3 + }}({\rm{aq}},0.015{\rm{M}}) + 3{\rm{Ni}}({\rm{s}})\)

According to the above cell reaction nickel is the cathode and aluminium is the anode.

So cell potential at standard condition

\(\begin{aligned}{} &= E_{{\rm{cathode }}}^0 - E_{{\rm{anode }}}^0\\ &= \{ - 0.257 - ( - 1.662)\} V\\ &= 1.405\;{\rm{V}}\end{aligned}\)

Cell potential at the given condition is obtained using Nernst's equation.

So we can write,

\(\begin{aligned}{}{E_{{\rm{cell }}}} &= E_{{\rm{cell }}}^0 - (0.059/6) \times \log \left( {{{0.015}^2}/{{0.25}^3}} \right)\\ &= \{ 1.405 - 0.0098 \times \log (225/15625)\} V\\ &= \{ 1.405 - 0.0098 \times \log 0.0144\} V\\ &= \{ 1.405 - 0.0098 \times - 1.8416\} V\\ = \{ 1.405 + 0.01804\} V\\& = 1.423\;{\rm{V}}\end{aligned}\)

As standard cell potential and potential at given conditions are positive so the reaction will be spontaneous.

\(\Delta G = n \times F \times {E_0}cell = - 2 \times 96500 \times 1.435\;{\rm{J}} = - 276.955\;{\rm{kJ}}\)\(\Delta {G^0} = - n \times F \times E_{cell}^0 = - 6 \times 96500 \times 1.405\;{\rm{J}} = - 813.495\;{\rm{kJ}}\)\(\Delta G = - n \times F \times {E_{cell}} = - 6 \times 96500 \times 1.423\;{\rm{J}} = - 823.917\;{\rm{kJ}}\)

04

c) Determine the standard cell potential

\(6{\rm{B}}{{\rm{r}}^ - }({\rm{aq}},1.0{\rm{M}}) + 2{\rm{A}}{{\rm{l}}^{ + 3}}({\rm{aq}},0.023{\rm{M}}) \to 3{\rm{B}}{{\rm{r}}_2}({\rm{l}},0.11{\rm{M}}) + 2{\rm{Al}}({\rm{s}})\)

According to the above cell reaction aluminium is the cathode and bromine is the anode. So cell potential at standard condition

\(\begin{aligned}{} &= E_{{\rm{cathode }}}^0 - E_{{\rm{anode }}}^0\\ &= \{ - 1.6620 - 1.0873\} {\rm{V}}\\ &= 2.7493\;{\rm{V}}\end{aligned}\)

Cell potential at the given condition is obtained using Nernst's equation.

So we can write,

\(\begin{aligned}{}{{\rm{E}}_{{\rm{cell }}}} &= {{\rm{E}}^0}{\rm{ cell }} - (0.059/6) \times \log \left\{ {0.11/\left( {{{1.0}^6} \times {{0.023}^2}} \right)} \right\}\\ &= \{ - 2.7496 - 0.0098 \times \log (11000/529)\} {\rm{V}}\\ &= \{ - 2.7493 - 0.0098 \times \log 20.7939\} {\rm{V}}\\ &= \{ - 2.7493 - 0.0098 \times 1.3179\} {\rm{V}}\\ &= \{ - 2.7493 - 0.0129\} {\rm{V}}\\ &= - 2.7622\;{\rm{V}}\end{aligned}\)

As standard cell potential and potential at given conditions are negative so the

Reaction will be non-spontaneous.

\(\Delta {G^0} = - n \times F \times E_{cell}^0 = - 6 \times 96500 \times - 2.749\;{\rm{J}} = 1591.671\;{\rm{kJ}}\)\(\Delta G = - n \times F \times {E_{cell}} = - 6 \times 96500 \times - 2.7622\;{\rm{J}} = 1599.313\;{\rm{kJ}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Given the following cell notations, determine the species oxidized, species reduced, and the oxidizing agent and reducing agent, without writing the balanced reactions

a. \({\rm{Mg}}(s)\left| {{\rm{M}}{{\rm{g}}^{2 + }}(aq) || {\rm{C}}{{\rm{u}}^{2 + }}(aq)} \right|{\rm{Cu}}(s)\)

b.\({\rm{Ni}}(s)\left| {{\rm{N}}{{\rm{i}}^{2 + }}(aq) || {\rm{A}}{{\rm{g}}^ + }(aq)} \right|{\rm{Ag}}(s)\)

Identify the species that was oxidized, the species that was reduced, the oxidizing agent, and the reducing agentin each of the reactions of the previous problem.

(a) \({\bf{S}}{{\bf{O}}_{\bf{3}}}^{{\bf{2 - }}}{\bf{(aq) + Cu(OH}}{{\bf{)}}_{\bf{2}}}{\bf{(s)}} \to {\bf{S}}{{\bf{O}}_{\bf{4}}}^{{\bf{2 - }}}{\bf{(aq) + Cu(OH)(s)}}\)

(b) \({{\bf{O}}_{\bf{2}}}{\bf{(g) + Mn(OH}}{{\bf{)}}_{\bf{2}}}{\bf{(s)}} \to {\bf{Mn}}{{\bf{O}}_{\bf{2}}}{\bf{(s)}}\)

(c) \({\bf{N}}{{\bf{O}}_{\bf{3}}}^{\bf{ - }}{\bf{(aq) + }}{{\bf{H}}_{\bf{2}}}{\bf{(g)}} \to {\bf{NO(g)}}\)

(d) \({\bf{Al(s) + Cr}}{{\bf{O}}_{\bf{4}}}^{{\bf{2 - }}}{\bf{(aq)}} \to {\bf{Al(OH}}{{\bf{)}}_{\bf{3}}}{\bf{(s) + Cr(OH}}{{\bf{)}}_{\bf{4}}}^{\bf{ - }}{\bf{(aq)}}\)

Aluminium\(\left( {{\bf{E}}_{{\bf{A}}{{\bf{l}}^{{\bf{3 + }}}}{\bf{/Al}}}^{\bf{^\circ }}{\bf{ = - 2}}{\bf{.07\;V}}} \right)\) is more easily oxidized than iron \(\left( {{\bf{E}}_{{\bf{F}}{{\bf{e}}^{\bf{3}}}}^{\bf{^\circ }}{\bf{/F}}{{\bf{e}}^{\bf{ - }}}{\bf{ = - 0}}{\bf{.477\;V}}} \right){\bf{,}}\) and yet when both are exposed to the environment, untreated aluminium has very good corrosion resistance while the corrosion resistance of untreated iron is poor. Explain this observation.

What value of Q for the previous concentration cell would result in a voltage of 0.10 V? If the concentration of zinc ion at the cathode was 0.50 M, what was the concentration at the anode?

Why is it not possible for hydroxide ion \(\left( {{\bf{O}}{{\bf{H}}^ - }} \right)\)to appear in either of the half-reactions or the overall equation when balancing oxidation-reduction reactions in acidic solution?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free