Use the data in Appendix \({\rm{L}}\) to determine the equilibrium constant for the following reactions. Assume 298.15\({\rm{K}}\) if no temperature is given.

(a) \({\bf{AgCl(s)}}\rightleftharpoons {\bf{A}}{{\bf{g}}^{\bf{ + }}}{\bf{(aq) + C}}{{\bf{l}}^{\bf{ - }}}{\bf{(aq)}}\)

(b) \({\bf{CdS(s)}}\rightleftharpoons {\bf{C}}{{\bf{d}}^{{\bf{2 + }}}}{\bf{(aq) + }}{{\bf{S}}^{{\bf{2 - }}}}{\bf{(aq)}}\) at \({\bf{377\;K}}\)

(c) \({\bf{H}}{{\bf{g}}^{{\bf{2 + }}}}{\bf{(aq) + 4B}}{{\bf{r}}^{\bf{ - }}}{\bf{(aq)}}\rightleftharpoons {\left[ {{\bf{HgB}}{{\bf{r}}_{\bf{4}}}} \right]^{{\bf{2 - }}}}{\bf{(aq)}}\)

(d) \({{\bf{H}}_{\bf{2}}}{\bf{O(l)}}\rightleftharpoons {{\bf{H}}^{\bf{ + }}}{\bf{(aq) + O}}{{\bf{H}}^{\bf{ - }}}{\bf{(aq)}}\) at \({\bf{2}}{{\bf{5}}^{\bf{^\circ }}}{\bf{C}}\)

Short Answer

Expert verified
  1. \({\rm{AgCl}}({\rm{s}})\rightleftharpoons {\rm{A}}{{\rm{g}}^ + } + {\rm{C}}{{\rm{l}}^ - }\)Equilibrium constant is \(1.66 \times {10^{ - 10}}\).
  2. \({\rm{CdS}}({\rm{s}}) \to {\rm{C}}{{\rm{d}}^{2 + }}({\rm{aq}}) + {{\rm{S}}^{2 - }}({\rm{aq}})({\rm{ At377K) }}\)Equilibrium constant is \(2.75 \times {10^{ - 21}}\).
  3. \({\rm{H}}{{\rm{g}}^{2 + }}({\rm{aq}}) + 4{\rm{B}}{{\rm{r}}^ - }({\rm{aq}}) \to {\left( {{\rm{Hg}}{{({\rm{Br}})}_4}} \right)^{2 - }}({\rm{aq}})\). Equilibrium constant is \(5.355 \times {10^{21}}\).
  4. \({{\rm{H}}_2}{\rm{O}}({\rm{l}}) \to {{\rm{H}}^ + }({\rm{aq}}) + {\rm{O}}{{\rm{H}}^ - }({\rm{aq}})\). Equilibrium constant is \(9.35 \times {10^{ - 15}}\).

Step by step solution

01

Define the equilibrium constant

Equilibrium constant is the ratio of products to that of reactants. It gives idea about the progress of a reversible reaction.

02

Step 2:a) Determinethe equilibrium constant

\({\rm{AgCl}}({\rm{s}})\rightleftharpoons {\rm{A}}{{\rm{g}}^ + } + {\rm{C}}{{\rm{l}}^ - }\)

Equilibrium constant is \(1.66 \times {10^{ - 10}}\).

Using Nernst equation we can write that equilibrium constant \({\rm{K = 1}}{{\rm{0}}^{{\rm{n}}{{\rm{E}}^{\rm{0}}}}}_{{\rm{cell}}}{\rm{/0}}{\rm{.059}}\)

\(\begin{aligned}{}{\rm{AgCl}}({\rm{s}}) + {{\rm{e}}^ - } \to {\rm{A}}{{\rm{g}}^ + } + {\rm{C}}{{\rm{l}}^ - }\left( {{{\rm{E}}^0} = 0.22233\;{\rm{V}}} \right)\\{\rm{Ag}} \to {\rm{A}}{{\rm{g}}^ + } + {{\rm{e}}^ - }\left( {{{\rm{E}}^0} = - 0.7996\;{\rm{V}}} \right)\end{aligned}\)

Adding these two equations we get \({\rm{AgCl}}({\rm{s}}) \to {\rm{A}}{{\rm{g}}^ + }({\rm{aq}}) + {\rm{C}}{{\rm{l}}^ - }({\rm{aq}})\) which has cell potential \( = (0.22233 - 0.7996){\rm{V}} = - 0.57727\;{\rm{V}}\)

Thus, equilibrium constant can be calculated as follows:

\(\begin{aligned}{}K &= 1{0^{n{E^0}_{cell}/0.059}}\\ &= 1{0^{ - 1 \times 0.57727/0.059}}\\& = 1{0^{ - 9.779}}\\ &= 1.66 \times 1{0^{ - 10}}\end{aligned}\)

03

b) Determine the equilibrium constant

\({\rm{CdS}}({\rm{s}}) \to {\rm{C}}{{\rm{d}}^{2 + }}({\rm{aq}}) + {{\rm{S}}^{2 - }}({\rm{aq}})({\rm{ At377K) }}\)

Equilibrium constant is \(2.75 \times {10^{ - 21}}\).

Using Nernst equation we can write that equilibrium constant

\({\mathop{\rm K}\nolimits} = 1{0^{n{E^0}}}_{cell }\left\{ {\{ (2.303 \times 8.314 \times 377)/96500\} = 1{0^{n{E^0}}}} \right.\) cell \(/.0746\)

\(\begin{aligned}{}CdS + 2{e^ - } \to Cd + {S^{2 - }}\left( {{E^0} = - 1.1700V} \right)\\Cd \to C{d^{2 + }} + 2{e^ - }\left( {{E^0} = 0.4030V} \right)\end{aligned}\)

Adding these two equations we get \({\mathop{\rm CdS}\nolimits} \to C{d^{2 + }} + 2{e^ - }\) which has cell potential

\( = ( - 1.1700 + 0.4030)V = - 0.7670\;V\)

Thus equilibrium constant can be calculated as follows:

\(\begin{aligned}{}K& = 1{0^{n{E^0} cell /.0746}}\\ &= 1{0^{ - 1 \times 0.57727/0.059}}\\ &= 1{0^{ - 9.779}} &= 1.66 \times 1{0^{ - 10}}\\ &= 1{0^{2 \times - 0.7670/0.0746}}\\ &= 1{0^{ - 20.56}}\\ &= 2.75 \times 1{0^{ - 21}}\end{aligned}\)

04

c) Determine the equilibrium constant

\({\rm{H}}{{\rm{g}}^{2 + }}({\rm{aq}}) + 4{\rm{B}}{{\rm{r}}^ - }({\rm{aq}}) \to {\left( {{\rm{Hg}}{{({\rm{Br}})}_4}} \right)^{2 - }}({\rm{aq}})\)

Equilibrium constant is \(5.355 \times {10^{21}}\).

Using Nernst equation we can write that equilibrium constant \({\mathop{\rm K}\nolimits} = 1{0^{n{E^0}}}_{ccl}/0.059\)

\({\mathop{\rm Hg}\nolimits} + 4B{r^ - }(aq) \to \left( {_g^H(aq) + 2{e^ - }\left( {{E^0} = - 0.21\;V} \right)} \right.\)

\({{\mathop{\rm Hg}\nolimits} ^{2 + }}(aq) + 2{e^ - } \to Hg\left( {{E^0} = 0.851\;V} \right)\)

Adding these two equations we get \({{\mathop{\rm Hg}\nolimits} ^{2 + }}(aq) + 4B{r^ - }(aq) \to {\left( {Hg{{(Br)}_4}} \right)^{2 - }}(aq)\) which has cell potential

\((0.851 - 0.210)V = 0.641\;V\)

Thus equilibrium constant can be calculated as follows:

\({\mathop{\rm K}\nolimits} = 1{0^{n{E_{cell }} / 0.059}} = 1{0^{2 \times 0.641/0.059}} = 1{0^{21.728}} = 5.355 \times 1{0^{21}}\)

05

d) Determine the equilibrium constant

\({{\rm{H}}_2}{\rm{O}}({\rm{l}}) \to {{\rm{H}}^ + }({\rm{aq}}) + {\rm{O}}{{\rm{H}}^ - }({\rm{aq}})\)

Equilibrium constant is \(9.35 \times {10^{ - 15}}\).

Explanation of Solution

Using Nernst equation we can write that equilibrium constant \({\mathop{\rm K}\nolimits} = 1{0^{n{E^0}}}_{cell }/0.059\)

\(\begin{aligned}{}2{{\rm{H}}_2}{\rm{O}} + 2{{\rm{e}}^ - } \to {{\rm{H}}_2} + 2{\rm{O}}{{\rm{H}}^ - }\left( {{{\rm{E}}_0} = - 0.8277\;{\rm{V}}} \right)\\2{{\rm{H}}_2}{\rm{O}} + {{\rm{H}}_2} \to 2{{\rm{H}}_3}{{\rm{O}}^ + }({\rm{aq}}) + 2{\rm{O}}{{\rm{H}}^ - }({\rm{aq}})\left( {{{\rm{E}}_0} = 0.00\;{\rm{V}}} \right)\end{aligned}\)

Add these two equations.

The equation is given by:

\(2{{\rm{H}}_2}{\rm{O}} \to {{\rm{H}}_3}{{\rm{O}}^ + }({\rm{aq}}) + {\rm{O}}{{\rm{H}}^ - }({\rm{aq}})\)

Cell potential is equal to

\( - (0.8277 - 0)V = - 0.8277\;V\)

Thus equilibrium constant can be calculated as follows:

\({\mathop{\rm K}\nolimits} = 1{0^{nE_{cell }^0/0.059}} = 1{0^{1 \times - 0.8277/0.059}} = 1{0^{14.028}} = 9.35 \times 1{0^{ - 15}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Aluminium metal can be made from aluminium ions by electrolysis. What is the half-reaction at the cathode? What mass of aluminium metal would be recovered if a current of 2.50 × 103 A passed through the solution for 15.0 minutes? Assume the yield is 100%

For each of the following balanced half-reactions, determine whether an oxidation or reduction is occurring.

(a) \({\bf{C}}{{\bf{l}}^{\bf{ - }}}{\bf{ + 3}}{{\bf{e}}^{\bf{ - }}} \to {\bf{C}}{{\bf{l}}_{\bf{2}}}\)

(b) \({\bf{M}}{{\bf{n}}^{{\bf{2 + }}}} \to {\bf{Mn}}{{\bf{O}}_{\bf{2}}}\)

(c) \({{\bf{H}}_{\bf{2}}} \to {{\bf{H}}^{\bf{ + }}}\)

(d) \({\bf{NO}}_{\bf{3}}^{\bf{ - }} \to {\bf{NO}}\)

For the scenario in the previous question, how many electrons moved through the circuit.

Determine the standard cell potential and the cell potential under the stated conditions for the electrochemical reactions described here. State whether each is spontaneous or nonspontaneous under each set of conditions at \({\bf{298}}{\bf{.15\;K}}\).

(a) \({\bf{Hg(l) + }}{{\bf{S}}^{{\bf{2 - }}}}{\bf{(aq,0}}{\bf{.10M) + 2A}}{{\bf{g}}^{\bf{ + }}}{\bf{(aq,0}}{\bf{.25M)}} \to {\bf{2Ag(s) + HgS(s)}}\)

(b) The galvanic cell is made from a half-cell consisting of an aluminium electrode in 0.015M aluminium nitrate solution and a half-cell consisting of a nickel electrode in \({\bf{0}}{\bf{.25M}}\) nickel(II) nitrate solution.

(c) The cell is made of a half-cell in which \({\bf{1}}{\bf{.0M}}\) aqueous bromide is oxidized to \({\bf{0}}{\bf{.11M}}\) bromine ion and a half-cell in which aluminium ion at \({\bf{0}}{\bf{.023M}}\) is reduced to aluminium metal. Assume the standard reduction potential for \({\bf{B}}{{\bf{r}}_{\bf{2}}}{\bf{(l)}}\) is the same as that of \({\bf{B}}{{\bf{r}}_{\bf{2}}}{\bf{(aq)}}\).

For each reaction listed, determine its standard cell potential at \({25\circ }{\rm{C}}\) and whether the reaction is spontaneous at standard conditions.

(a)\({\mathop{\rm Mn}\nolimits} (s) + {\rm{N}}{{\rm{i}}^{2 + }}(aq) \to {{\mathop{\rm Mn}\nolimits} ^{2 + }}(aq) + {\rm{Ni}}(s)\)

(b)\(3{\rm{C}}{{\rm{u}}^{2 + }}(aq) + 2{\rm{Al}}(s) \to 2{\rm{A}}{{\rm{l}}^{3 + }}(aq) + 3{\rm{Cu}}(s)\)

(c)\({\rm{Na}}(s) + {\rm{LiN}}{{\rm{O}}_3}(aq) \to {\rm{NaN}}{{\rm{O}}_3}(aq) + {\rm{Li}}(s)\)

(d) \({\rm{Ca}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) + {\rm{Ba}}(s) \to {\rm{Ba}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_2}(aq) + {\rm{Ca}}(s)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free