Assuming that no equilibria other than dissolution are involved, calculate the molar solubility of each of the following from its solubility product:

\(\begin{array}{l}(a)A{g_2}S{O_4}\\(b)PbB{r_2}\\(c)AgI\\(d)Ca{C_2}{O_4} \times {H_2}O\end{array}\)

Short Answer

Expert verified

The solubility product constant represented as Ksp can be defined as state in which a solid and its respective ions in given solution are in equilibrium. Its value indicates the extent to which a compound can undergo dissociation in water.

a)\(x = 1.5 \times 1{0^{ - 2}}M\)

b) \(x = 2 \times 1{0^{ - 2}}M\)

c)\(x = 9.2 \times 1{0^{ - 9}}M\)

d) \(x = 6.3 \times 1{0^{ - 5}}M\)

Step by step solution

01

Step 1: To  calculate the molar solubility of each of the following from its solubility product:

The solubility product of\({\rm{A}}{{\rm{g}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}{\rm{ = 1}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\)according to Ksp table

\(\begin{array}{l}{{\rm{K}}_{{\rm{sp}}}}\left( {{\rm{A}}{{\rm{g}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right){\rm{ = 1}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = }}{\left[ {{\rm{A}}{{\rm{g}}^{\rm{ + }}}} \right]^{\rm{2}}}\left[ {{\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}} \right]\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = }}\;{\rm{4}}{{\rm{x}}^{\rm{2}}}{\rm{ \times x}}\;\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = }}\;{\rm{4}}{{\rm{x}}^{\rm{3}}}\\{\rm{x = }}\sqrt[{\rm{3}}]{{{{\rm{K}}_{{\rm{sp}}}}{\rm{ \div 4}}}}\\{\rm{x}}\;{\rm{ = }}\;\sqrt[{\rm{3}}]{{{\rm{1}}{\rm{.4 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{ \div 4}}}}\\{\rm{x}}\;{\rm{ = 1}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{M}}\end{array}\)

02

Step 2: To  calculate the molar solubility of each of the following from its solubility product:

The solubility product of\({\rm{PbB}}{{\rm{r}}_{\rm{2}}}{\rm{ = 4}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\)according to Ksp table

\(\begin{array}{l}{{\rm{K}}_{{\rm{sp}}}}\left( {{\rm{PbB}}{{\rm{r}}_{\rm{2}}}} \right){\rm{ = 4}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = }}\left[ {{\rm{P}}{{\rm{b}}^{{\rm{2 + }}}}} \right]{\left[ {{\rm{B}}{{\rm{r}}^{\rm{ - }}}} \right]^{\rm{2}}}\\{\rm{ = }}\;{\rm{x \times 4}}{{\rm{x}}^{\rm{2}}}{\rm{ = 4}}{{\rm{x}}^{\rm{3}}}\\{\rm{x}}\;{\rm{ = }}\;\sqrt[{\rm{3}}]{{{{\rm{K}}_{{\rm{sp}}}}{\rm{ \div }}}}{\rm{4}}\\{\rm{x}}\;{\rm{ = }}\;\sqrt {{\rm{4}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 5}}}}{\rm{ \div 4}}} \\{\rm{x}}\;{\rm{ = }}\;{\rm{2 \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{M}}\end{array}\)

03

Step 3: To  calculate the molar solubility of each of the following from its solubility product:

The solubility product of\(\;(AgI) = 8.5 \times 1{0^{ - 17}}\)according to KSP table

\(\begin{array}{l}{{\rm{K}}_{{\rm{sp}}}}{\rm{(AgI) = 8}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 17}}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = }}\left[ {{\rm{A}}{{\rm{g}}^{\rm{ + }}}} \right]\left[ {{{\rm{I}}^{\rm{ - }}}} \right]{\rm{ = }}\;{\rm{x \times x}}\;{\rm{ = }}\;{{\rm{x}}^{\rm{2}}}\\{\rm{x = }}\sqrt {{{\rm{K}}_{{\rm{sp}}}}} {\rm{ = }}\;\sqrt {{\rm{8}}{\rm{.5 \times 1}}{{\rm{0}}^{{\rm{ - 17}}}}} \\{\rm{x}}\;{\rm{ = }}\;{\rm{9}}{\rm{.2 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}{\rm{M}}\end{array}\)

04

Step 4: To calculate the molar solubility of each of the following from its solubility product:

The solubility product of\(Ca{C_2}{O_4} = 4 \times 1{0^{ - 9}}\)according to KSP table

\(\begin{array}{l}{{\rm{K}}_{{\rm{sp}}}}\left( {{\rm{Ca}}{{\rm{C}}_{\rm{2}}}{{\rm{O}}_{\rm{4}}}} \right){\rm{ = 4 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = }}\left[ {{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}} \right]\left[ {{{\rm{C}}_{\rm{2}}}{\rm{O}}_{\rm{4}}^{{\rm{2 - }}}} \right]{\rm{ = x \times x = }}{{\rm{x}}^{\rm{2}}}\\{\rm{x}}\;{\rm{ = }}\sqrt {{{\rm{K}}_{{\rm{sp}}}}} {\rm{ = }}\sqrt {{\rm{4 \times 1}}{{\rm{0}}^{{\rm{ - 9}}}}} \\x = 6.3 \times 1{0^{ - 5}}M\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the molar solubility of BaSO4 in a 0.250-M solution of NaHSO4? Ka for HSO4 = 1.2×10–2.

What is the molar solubility of CaF2 in a 0.100 M solution of HF? Kafor HF = 7.2 × 10–4.

Question: In a titration of cyanide ion, 28.72 mL of 0.0100 M AgNO3 is added before precipitation begins. [The reaction of Ag+ with CN goes to completion, producing the Ag(CN)2 complex.] Precipitation of solid AgCN takes place when excess Ag+ is added to the solution, above the amount needed to complete the formation of Ag(CN)2 . How many grams of NaCN were in the original sample?

Question: Under what circumstances, if any, does a sample of solid AgCl completely dissolve in pure water?

Question: 29. The following concentrations are found in mixtures of ions in equilibrium with slightly soluble solids. From the concentrations given, calculate \({K_{sp}}\) for each of the slightly soluble solids indicated:

(a) TlCl:\(\left( {T{l^ + }} \right) = 1.21 \times 1{0^{ - 2}}M,\left( {C{l^ - }} \right) = 1.2 \times 1{0^{ - 2}}M\)

(b)\(Ce{\left( {I{O_3}} \right)_4}:\left( {C{e^{4 + }}} \right) = 1.8 \times 1{0^{ - 4}}M,\left( {I{O_3}^ - } \right) = 2.6 \times 1{0^{ - 13}}M\)

(c)\(G{d_2}{\left( {S{O_4}} \right)_3}:\left( {G{d^{3 + }}} \right) = 0.132M,\left( {SO_4^{2 - }} \right) = 0.198M\)

(d)\(A{g_2}S{O_4}:\left( {A{g^ + }} \right) = 2.40 \times 1{0^{ - 2}}M,\left( {SO_4^{2 - }} \right) = 2.05 \times 1{0^{ - 2}}M\)

(e) \(BaS{O_4}:\left( {B{a^{2 + }}} \right) = 0.500M,\left( {SO_4^{2 - }} \right) = 2.16 \times 1{0^{ - 10}}M\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free