We have a \(0.138 M\) solution of \({{\mathop{\rm CH}\nolimits} _3}N{H_2}\).
let us calculate the molar solubility of \({\mathop{\rm Pb}\nolimits} {\left( {OH} \right)_2}\)
- \({K_b}{\rm{\;of\;C}}{{\rm{H}}_3}{\rm{N}}{{\rm{H}}_2}{\rm{\;is \;}}4.4 \times {10^{ - 4}}\)
![]()
Now, let us calculate the concentration of OH-
\(\begin{array}{*{20}{c}}{{K_b} = \frac{{\left[ {{\rm{C}}{{\rm{H}}_3}{\rm{N}}{{\rm{H}}_3} + } \right] \cdot \left[ {{\rm{O}}{{\rm{H}}^ - }} \right]}}{{\left[ {{\rm{C}}{{\rm{H}}_3}{\rm{N}}{{\rm{H}}_2}} \right]}}}\\{4.4 \cdot {{10}^{ - 4}} = \frac{{x \cdot x}}{{0.138 - x}}}\\{{x^2} = 6.072 \times {{10}^{ - 5}} - 4.4 \times {{10}^{ - 4}}x}\\{0 = {x^2} + 4.4 \times {{10}^{ - 4}}x - 6.072 \times {{10}^{ - 5}}}\\{x = 7.58 \times {{10}^{ - 3}}}\\{\left[ {O{H^ - }} \right] = x = 7.58 \cdot {{10}^{ - 3}}}\end{array}\)