A solution of \({\bf{0}}.{\bf{075}}{\rm{ }}{\bf{M}}{\rm{ }}{\bf{CoB}}{{\bf{r}}_{\bf{2}}}\) is saturated with\({{\bf{H}}_{\bf{2}}}{\bf{S}}{\rm{ }}\left( {\left[ {{{\bf{H}}_{\bf{2}}}{\bf{S}}} \right]{\rm{ }} = {\rm{ }}{\bf{0}}.{\bf{10}}{\rm{ }}{\bf{M}}} \right)\). What is the minimum pH at which CoS begins to precipitate?

\(\begin{array}{*{20}{c}}{CoS(s) \rightleftharpoons C{o^{2 + }}(aq) + {S^{2 - }}(aq)\quad \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{K_{sp}} = 4.5 \times 1{0^{ - 27}}} \\ {{H_2}S(aq) + 2{H_2}O(l) \rightleftharpoons 2{H_3}{O^ + }(aq) + {S^{2 - }}(aq)\quad \;\;\;\;\;\;\;\;\;K = 1.0 \times 1{0^{ - 26}}} \end{array}\;\;\)

Short Answer

Expert verified

The minimum pH value is 0.89.

Step by step solution

01

Calculate the concentration of [S2-]:

A solution of \(0.075 M CoB{r_2}\) is saturated with \({{\mathop{\rm H}\nolimits} _2}S \left( {\left[ {{H_2}S} \right] = 0.10 M} \right)\)

Let us calculate the minimum pH at which \({\mathop{\rm CoS}\nolimits} \) begins to precipitate.

\({\text{CoS}}({\text{s}}) \rightleftharpoons {\text{C}}{{\text{o}}^{2 + }}({\text{aq}}) + {{\text{S}}^{2 - }}({\text{aq}})\)

\({K_{sp}} = 4.5 \times {10^{ - 27}}\)

\({{\text{H}}_2}{\text{S}}({\text{aq}}) + 2{{\text{H}}_2}{\text{O}}({\text{l}}) \rightleftharpoons 2{{\text{H}}_3}{{\text{O}}^ + }({\text{aq}}) + {{\text{S}}^{2 - }}({\text{aq}})\)

\(K = 1.0 \times {10^{ - 26}}\)

First, let us find the concentration of \(\left[ {{S^{2 - }}} \right]\)

\(\begin{array}{*{20}{c}}{{K_{sp}} = \left[ {{\rm{C}}{{\rm{o}}^{2 + }}} \right] \cdot \left[ {{S^{2 - }}} \right]}\\{\left[ {{S^{2 - }}} \right] = \frac{{{K_{sp}}}}{{\left[ {C{o^{2 + }}} \right]}}}\\{ = \frac{{4.5 \times {{10}^{ - 27}}}}{{0.075}}}\\{ = 6 \times {{10}^{ - 26}}{\rm{M}}}\end{array}\)

02

Calculate the concentration of \(\left[ {{{\bf{H}}_{\bf{3}}}{{\bf{O}}^{\bf{ + }}}} \right]\) and find the pH value:

Concentration of \(\left[ {{H_3}{O^ + }} \right]\) is

\(\begin{array}{*{20}{c}}{K = \frac{{{{\left[ {{{\rm{H}}_3}{{\rm{O}}^ + }} \right]}^2} \cdot \left[ {{{\rm{S}}^{2 - }}} \right]}}{{\left[ {{{\rm{H}}_2}{\rm{S}}} \right]}}}\\{1.0 \times {{10}^{ - 26}} = \frac{{{{\left[ {{{\rm{H}}_3}{{\rm{O}}^ + }} \right]}^2} \times 6 \times {{10}^{ - 26}}}}{{0.10}}}\\{{{\left[ {{{\rm{H}}_3}{{\rm{O}}^ + }} \right]}^2} = 0.0167}\\{\left[ {{{\rm{H}}_3}{{\rm{O}}^ + }} \right] = 0.129{\rm{M}}}\end{array}\)

And the pH value is

\(\begin{array}{c}pH = - \log \left[ {{H_3}{O^ + }} \right]\\ = - \log [0.129]\\ = 0.89\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question:A saturated solution of a slightly soluble electrolyte in contact with some of the solid electrolyte is said to be a system in equilibrium. Explain. Why is such a system calling a heterogeneous equilibrium?

Question: Calculate the Fe3+ equilibrium concentration when 0.0888 mole of K3[Fe (CN)6] is added to a solution with 0.0.00010 M CN.

Assuming that no equilibria other than dissolution are involved, calculate the concentration of all solute species in each of the following solutions of salts in contact with a solution containing a common ion. Show that changes in the initial concentrations of the common ions can be neglected.

\(\begin{array}{l}(a)AgCl(\;s\;)in 0.025MNaCl \\(b)Ca{F_2}(\;\;s\;)in 0.00133MKF \\(c)A{g_2}S{O_4}(\;\;s\;)in 0.500\;L of a solution containing 19.50\;g of {K_2}S{O_4}\\(d)Zn{(OH)_2}(\;s\;)in a solution buffere data pHof 11.45\end{array}\)

Question: Using the dissociation constant, \({K_d} = 1 \times 1{0^{ - 44}}\), calculate the equilibrium concentrations of \(F{e^{3 + }}\;and\;C{N^ - }\) in a \(0.333M\) solution of \(Fe(CN)_6^{3 - }\).

The Handbook of Chemistry and Physics (http://openstaxcollege.org/l/16Handbook) gives solubilities of the following compounds in grams per 100 mL of water. Because these compounds are only slightly soluble, assume that the volume does not change on dissolution and calculate the solubility product for each.

\(\begin{array}{l}(a)BaSe{O_4},0.0118\;g/100\;mL\\(b)Ba{\left( {Br{O_3}} \right)_2} \times {H_2}O,0.30\;g/100\;mL\\(c)N{H_4}MgAs{O_4} \times 6{H_2}O,0.038\;g/100\;mL\\(d)L{a_2}{\left( {Mo{O_4}} \right)_3},0.00179\;g/100\;mL\end{array}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free