Refer to Appendix \(J\) for solubility products for calcium salts. Determine which of the calcium salts listed is most soluble in moles per liter and which is most soluble in grams per liter.

Short Answer

Expert verified

The solubility product constant represented as Ksp can be defined as state in which a solid and its respective ions in given solution are in equilibrium. Its value indicates the extent to which a compound can undergo dissociation in water.

Step by step solution

01

To determine the x value for \(Ca{(\;OH)_2}\)

\(\begin{array}{l}{\rm{Ca}}{({\rm{OH}})_2} \to {\rm{C}}{{\rm{a}}^{2 + }} + 2O{{\rm{H}}^ - }\\{{\rm{K}}_{{\rm{sp}}}} = {\rm{x}}{(2{\rm{x}})^2} = 4{{\rm{x}}^3} = 7.9 \times {10^{ - 6}}\\{\rm{x}} = \sqrt[3]{{\frac{{7.9 \times {{10}^{ - 6}}}}{4}}} = 0.013\;{\rm{M}}\end{array}\)

02

To determine the x value for \(CaC{O_3}\)

\(\begin{array}{l}{\rm{CaC}}{{\rm{O}}_3} \to {\rm{C}}{{\rm{a}}^{2 + }} + {\rm{CO}}_3^{2 - }\\{{\rm{K}}_{s{\rm{p}}}} = {{\rm{x}}^2} = 4.8 \times {10^{ - 9}}\\{\rm{x}} = 6.9 \times {10^{ - 5}}\;{\rm{M}}\end{array}\)

03

To determine the x value for \(CaS{O_4} \times {H_2}O\)

\(\begin{array}{l}{\rm{CaS}}{{\rm{O}}_4} \cdot {{\rm{H}}_2}{\rm{O}} \to {\rm{C}}{{\rm{a}}^{2 + }} + {\rm{SO}}_4^{(2 - )}.2{{\rm{H}}_{\rm{2}}}{\rm{O}}\\{{\rm{K}}_{{\rm{sp}}}} = {\rm{xx}}{(2x)^2} = 4{{\rm{x}}^4} = 2.4 \times {10^{ - 5}}\\{\rm{x}} = \sqrt[4]{{\frac{{2.4 \times {{10}^{ - 5}}}}{4}}} = 0.049\;{\rm{M}}\end{array}\)\(\)

04

To determine the x value for \(Ca{C_2}{O_4} \times {H_2}O\)

\(\begin{array}{l}{\rm{Ca}}{{\rm{C}}_2}{{\rm{O}}_4} \cdot {{\rm{H}}_2}{\rm{O}} \to {\rm{C}}{{\rm{a}}^{2 + }} + {{\rm{C}}_2}{\rm{O}}_4^{2 - }.{{\rm{H}}_2}{\rm{O}}\\{{\rm{K}}_{{\rm{sp}}}} = {\rm{xxx}} = {{\rm{x}}^3} = 2.27 \times {10^{ - 9}}\\{\rm{x}} = \sqrt[3]{{2.27 \times {{10}^{ - 9}}}} = 1.3 \times {10^{ - 3}}\;{{\rm{M}}_{_{}}}\end{array}\)

05

To determine the x value for \(C{a_3}{\left( {P{O_4}} \right)_2}\)

\(\begin{array}{l}{\rm{C}}{{\rm{a}}_3}{\left( {{\rm{P}}{{\rm{O}}_4}} \right)_2} \to 3{\rm{C}}{{\rm{a}}^{2 + }} + 2{\rm{PO}}_4^{(3 - )}\\{K_{{\rm{sp}}}} = {{\rm{x}}^3}{\left( {\frac{2}{3}{\rm{x}}} \right)^2} = 1 \times {10^{ - 25}}\\{\rm{x}} = \sqrt[5]{{\frac{{1 \times {{10}^{ - 25}} \times 9}}{4}}} = 1 \times {10^{ - 5}}{\rm{M}}\end{array}\)

In this case, solubility equals to one third of\(\left[ {{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}} \right]\), that is\(4 \times {10^{ - 6}}\).

06

To determine the x value for \(CaHP{O_4}\)

\(\begin{array}{l}{\rm{CaHP}}{{\rm{O}}_4} \to {\rm{C}}{{\rm{a}}^{2 + }} + {\rm{HPO}}_4^{(2 - )}\\{{\rm{K}}_{{\rm{sp}}}} = {{\rm{x}}^2} = 7 \times {10^{ - 7}}\\{\rm{x}} = 8.4 \times {10^{ - 4}}\;{\rm{M}}\end{array}\)

07

To determine the x value for \(Ca{F_2}\)

\(\begin{array}{l}{\rm{Ca}}{{\rm{F}}_2} \to {\rm{C}}{{\rm{a}}^{2 + }} + {{\rm{F}}^{(2 - )}}\\{{\rm{K}}_{{\rm{sp}}}} = {{\rm{x}}^2} = 4 \times {10^{ - 11}}\\{\rm{x}} = 6.3 \times {10^{ - 6}}\;{\rm{M}}\end{array}\)

Finally we get,

a) \(0.013\;\;{\rm{M}}\)

b) \(6.9 \times {10^{ - 5}}\;{\rm{M}}\)

c) \(0.049\;\;{\rm{M}}\)

d) \(1.3 \times {10^{ - 3}}\;{\rm{M}}\)

e) \(4 \times {10^{ - 6}}\;{\rm{M}}\)

f) \(8.4 \times {10^{ - 4}}\;{\rm{M}}\)

g) \(6.3 \times {10^{ - 6}}\;{\rm{M}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Perform the following calculations involving concentrations of iodate ions:

(a) The iodate ion concentration of a saturated solution of \(La{\left( {I{O_3}} \right)_3}\)was found to be\(3.1 \times 1{0^{ - 3}}mol/L\). Find the\({K_{sp}}\).

(b) Find the concentration of iodate ions in a saturated solution of \(Cu{\left( {I{O_3}} \right)_2}\left( {{K_{5p}} = 7.4 \times 1{0^{ - 8}}} \right)\).

Calculate the molar solubility of Al (OH)3 in a buffer solution with 0.100 M NH3 and 0.400 M NH4+

Question: How many grams of \(Pb{(OH)_2}\)will dissolve in 500 mL of a \(0.050 - MPbC{l_2}\;solution\;\left( {{K_{sp}} = 1.2 \times 1{0^{ - 15}}} \right)?\)

Question: 29. The following concentrations are found in mixtures of ions in equilibrium with slightly soluble solids. From the concentrations given, calculate \({K_{sp}}\) for each of the slightly soluble solids indicated:

(a) TlCl:\(\left( {T{l^ + }} \right) = 1.21 \times 1{0^{ - 2}}M,\left( {C{l^ - }} \right) = 1.2 \times 1{0^{ - 2}}M\)

(b)\(Ce{\left( {I{O_3}} \right)_4}:\left( {C{e^{4 + }}} \right) = 1.8 \times 1{0^{ - 4}}M,\left( {I{O_3}^ - } \right) = 2.6 \times 1{0^{ - 13}}M\)

(c)\(G{d_2}{\left( {S{O_4}} \right)_3}:\left( {G{d^{3 + }}} \right) = 0.132M,\left( {SO_4^{2 - }} \right) = 0.198M\)

(d)\(A{g_2}S{O_4}:\left( {A{g^ + }} \right) = 2.40 \times 1{0^{ - 2}}M,\left( {SO_4^{2 - }} \right) = 2.05 \times 1{0^{ - 2}}M\)

(e) \(BaS{O_4}:\left( {B{a^{2 + }}} \right) = 0.500M,\left( {SO_4^{2 - }} \right) = 2.16 \times 1{0^{ - 10}}M\)

Question: How many grams of \(Zn{(CN)_2}(s)(117.44g/mol)\)would be soluble in 100 mL of\({H_2}O\)? Include the balanced reaction and the expression for \({K_{sp}}\)in your answer. The \({K_{sp}}\)value for\(Zn{(CN)_2}(s)\;is\;3.0 \times 1{0^{ - 16}}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free