Assuming that no equilibria other than dissolution are involved, calculate the concentrations of ions in a saturated solution of each of the following (see Appendix J for solubility products).

(a) TlCl

(b) \(Ba{F_2}\)

(c) \(A{g_2}Cr{O_4}\)

(d) \(Ca{C_2}{O_4} \times {H_2}O\)

(e) The mineral anglesite, \(PbS{O_4}\)

Short Answer

Expert verified

The solubility product constant represented as Ksp can be defined as state in which a solid and its respective ions in given solution are in equilibrium. Its value indicates the extent to which a compound can undergo dissociation in water.

Step by step solution

01

To calculate the concentration of the ions in a saturated solution of TlCl

a)Ksp of a saturated solution of TICl can be calculated as follows

  1. \(\begin{array}{l}{{\rm{K}}_{{\rm{sp}}}} = \left[ {{\rm{T}}{{\rm{l}}^{\rm{ + }}}} \right]\left[ {{\rm{C}}{{\rm{l}}^{\rm{ - }}}} \right] = {{\rm{x}}^2} = 1.7 \times {10^{ - 4}}\\{\rm{x}} = 0.01\;{\rm{M}}\\\left[ {{\rm{T}}{{\rm{l}}^{\rm{ + }}}} \right] = \left[ {{\rm{C}}{{\rm{l}}^{\rm{ - }}}} \right] = 0.01\;{\rm{M}}\end{array}\)
02

To calculate the concentration of the ions in a saturated solution of

\(Ba{F_2}\)

b) Ksp of a saturated solution of BaF2 can be calculated as follows

\(\begin{array}{l}{{\rm{K}}_{{\rm{sp}}}} = \left[ {{\rm{B}}{{\rm{a}}^{{\rm{2 + }}}}} \right]{\left[ {{{\rm{F}}^{\rm{ - }}}} \right]^2} = {\rm{x}}{(2{\rm{x}})^2} = 4{{\rm{x}}^3} = 2.4 \times {10^{ - 5}}\\{\rm{x}} = \sqrt[3]{{\frac{{2.4 \times {{10}^{ - 5}}}}{4}}} = 0.02\;{\rm{M}}\\\left[ {{\rm{B}}{{\rm{a}}^{{\rm{2 + }}}}} \right] = 0.02\;{\rm{M}}\\\left[ {{{\rm{F}}^{\rm{ - }}}} \right] = 0.04\;{\rm{M}}\end{array}\)

03

To calculate the concentration of the ions in a saturated solution of

\(A{g_2}Cr{O_4}\)

C) Ksp of a saturated solution of AgCrO4 can be calculated as follows

c) \(\begin{array}{l}{{\rm{K}}_{{\rm{sp}}}} = {\left[ {{\rm{A}}{{\rm{g}}^ + }} \right]^2}\left[ {{\rm{CrO}}_4^{2 - }} \right] = {(2{\rm{x}})^2}{\rm{x}} = 4{{\rm{x}}^3} = 9 \times {10^{ - 12}}\\{\rm{x}} = \sqrt[3]{{\frac{{9 \times {{10}^{ - 12}}}}{4}}} = 1.3 \times {10^{ - 4}}{\rm{M}}\\\left[ {{\rm{A}}{{\rm{g}}^ + }} \right] = 2.6 \times {10^{ - 4}}\\\left[ {{\rm{CrOH}}_4^{2 - }} \right] = 1.3 \times {10^{ - 4}}{\rm{M}}\end{array}\)

04

To calculate the concentration of the ions in a saturated solution of

\(Ca{C_2}{O_4} \times {H_2}O\)

Ksp of\(Ca{C_2}{O_4} \times {H_2}O\) can be calculated as follows

d) \(\begin{array}{l}{{\rm{K}}_{{\rm{sp}}}} = \left[ {{\rm{C}}{{\rm{a}}^{2 + }}} \right]\left[ {{{\rm{C}}_2}{\rm{O}}_4^{2 - }} \right] \cdot \left[ {{{\rm{H}}_2}{\rm{O}}} \right] = {{\rm{x}}^3} = 1.96 \times {10^{ - 8}}\\{\rm{x}} = \sqrt[3]{{1.96 \times {{10}^{ - 8}}}}\;{\rm{M}} = 2.7 \times {10^{ - 3}}\;{\rm{M}}\\\left[ {{\rm{C}}{{\rm{a}}^{2 + }}} \right] = \left[ {{{\rm{C}}_2}{\rm{O}}_4^{2 - }} \right] = 2.7 \times {10^{ - 3}}\;{\rm{M}}\end{array}\)

05

To calculate the concentration of the ions in a saturated solution of

\(PbS{O_4}\)

e) Ksp of a saturated solution of PbSO4can be calculated as follows

\(\begin{array}{l}{{\rm{K}}_{{\rm{sp}}}} = \left[ {{\rm{P}}{{\rm{b}}^{{\rm{2 + }}}}} \right]\left[ {{\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}} \right] = {{\rm{x}}^2} = 1.3 \times {10^{ - 8}}\\{\rm{x}} = 1.1 \times {10^{ - 4}}\;{\rm{M}}\\\left[ {{\rm{P}}{{\rm{b}}^{{\rm{2 + }}}}} \right] = \left[ {{\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}} \right] = 1.1 \times {10^{ - 4}}\;{\rm{M}}\end{array}\)

Finally we get,

a) \(\left[ {{\rm{T}}{{\rm{l}}^ + }} \right] = \left[ {{\rm{C}}{{\rm{l}}^ - }} \right] = 0.01\;{\rm{M}}\)

b) \(\left[ {{\rm{B}}{{\rm{a}}^{2 + }}} \right] = 0.02\;{\rm{M}};\left[ {{{\rm{F}}^ - }} \right] = 0.04\;{\rm{M}}\)

c) \(\left[ {{\rm{A}}{{\rm{g}}^ + }} \right] = 2.6 \times {10^{ - 4}};\left[ {{\rm{Cr}}O_4^{2 - }} \right] = 1.3 \times {10^{ - 4}}\;{\rm{M}}\)

d) \(\left[ {{\rm{C}}{{\rm{a}}^{2 + }}} \right] = \left[ {{{\rm{C}}_2}{\rm{O}}_4^{2 - }} \right] = 2.7 \times {10^{ - 3}}\;{\rm{M}}\)

e) \(\left[ {{\rm{P}}{{\rm{b}}^{2 + }}} \right] = \left[ {{\rm{SO}}_4^{2 - }} \right] = 1.1 \times {10^{ - 4}}\;{\rm{M}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assuming that no equilibria other than dissolution are involved, calculate the concentrations of ions in a saturated solution of each of the following (see Appendix J for solubility products):

(a) \(AgI\)

(b) \(A{g_2}S{O_4}\)

(c) \(Mn{(\;OH\;)_2}\)

(d) \(Sr{(\;OH\;)_2} \times 8{H_2}O\)

(e) The mineral brucite, \(Mg{(\;OH\;)_2}\)

Identify all chemical species present in an aqueous solution of \(C{a_3}{\left( {P{O_4}} \right)_2}\)and list these species in decreasing order of their concentrations. (Hint: Remember that the \(PO_4^{3 - }\) ion is a weak base.)

Question: About 50% of urinary calculi (kidney stones) consist of calcium phosphate,\(C{a_3}{\left( {P{O_4}} \right)_2}\). The normal mid-range calcium content excreted in the urine is 0.10 g of \(C{a^{2 + }}\) per day. The normal mid-range amount of urine passed may be taken as 1.4 L per day. What is the maximum concentration of phosphate ion that urine can contain before a calculus begins to form?

Question: Calculate the equilibrium concentration of Ni2+ in a 1.0 M solution\(\left( {Ni{{\left( {N{H_3}} \right)}_6}} \right){\left( {N{O_3}} \right)_2}\).

Complete the changes in concentrations for each of the following reactions:

\(\begin{array}{l}(a)BaS{O_4}(S) \to nB{a^{2 + }}(aq) + SO_4^{2 - }(aq)\\ X - \\(b)A{g_2}S{O_4}(S) \to n2A{g^ + }(aq) + S{O_4}^{2 - }(a)\\ - X\\(c)Al{(OH)_3}(S) \to nA{l^{3 + }}(aq) + 3O{H^ - }(aq)\\ X \_ \\(d)Pb(OH)Cl(S) \to nP{b^{2 + }}(aq) + O{H^ - }(aq) + C{l^ - }(aq)\\ \_ X \_\\(e)C{a_3}{\left( {As{O_4}} \right)_2}(S) \to n3C{a^{2 + }}(aq) + 2AsO_4^{3 - }(aq)\\ 3x \_\end{array}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free