Question: Calculate the minimum concentration of ammonia needed in \(1.0L\)of solution to dissolve\(3.0 \times 1{0^{ - 3}}mol\) silver bromide.

Short Answer

Expert verified

The minimum concentration of ammonia needed in \(1.0L\)of solution to dissolve\(3.0 \times {10^{ - 3}}{\rm{mol}}\) silver bromide is\(1.034{\rm{M}}\).

Step by step solution

01

Define the dissociation constant formula:

The product of the reactant concentration divided by the product concentration yields the dissociation constant.

\({K_d} = \)Product of concentration of reactants\( \div \)concentration of products

02

Determine the maximum possible concentration of\(A{g^ + }\):

Consider the given values,

\(3.0 \cdot {10^{ - 3}}{\rm{\;mol of\;AgBr}}\)

Volume of a solution\( = 1L\)

Let the reaction of dissolution of \(AgBr\)is,

Thus, the dissociation constant is,

\({K_{sp}} = 5 \cdot {10^{ - 13}}\)

Since,\(0.003{\rm{\;mol of\;AgBr}}\)will dissolve into\(0.003{\rm{\;mol of\;A}}{{\rm{g}}^ + }\)and\(0.003{\rm{mol\;of\;B}}{{\rm{r}}^ - }\)2

Hence, the concentration of\({\rm{A}}{{\rm{g}}^ + }{\rm{and\;B}}{{\rm{r}}^ - }{\rm{are\;}}\frac{{0.003{\rm{mol}}}}{{1L}} = 0.003{\rm{M}}\)

Determine the maximum possible concentration of\(A{g^ + }\)that can be present without causing reprecipitation.

\(\begin{array}{*{20}{c}}{{K_{sp}} = \left( {A{g^ + }} \right) \cdot \left( {B{r^ - }} \right)}\\{\left( {A{g^ + }} \right) = \frac{{{K_{sp}}}}{{\left( {B{r^ - }} \right)}}}\end{array}\)

\(\begin{array}{*{20}{c}}{ = \frac{{5 \cdot {{10}^{ - 13}}}}{{0.003}}}\\{ = 1.67 \cdot {{10}^{ - 10}}{\rm{M}}}\end{array}\)

03

Calculate the minimum concentration of\(N{H_3}\):

Consider the reaction of formation of\({\left( {{\rm{Ag}}{{\left( {{\rm{N}}{{\rm{H}}_3}} \right)}_2}} \right)^ + }\),

Hence, dissociation constant is\({K_f} = 1.7 \cdot {10^7}\)

Find the \(\left( {{\rm{N}}{{\rm{H}}_3}} \right)\)needed to make\(({\rm{A}}{{\rm{g}}^ + }){\rm{\;be\;}}1.67 \cdot {10^{ - 10}}{\rm{M}}\)

Solve for the value of\(x,\)

\({K_f} = \frac{{\left( {{{\left( {{\rm{Ag}}{{({\rm{CN}})}_2}} \right)}^ - }} \right)}}{{({\rm{A}}{{\rm{g}}^ + }) \cdot {{\left( {N{{\rm{H}}_3}} \right)}^2}}}\)

\(1.7 \cdot {10^7} = \frac{{0.003}}{{1.67 \cdot {{10}^{ - 10}} \cdot {{(x - 0.006)}^2}}}\)

\({(x - 0.006)^2} = \frac{{0.003}}{{1.7 \cdot {{10}^7} \cdot 1.67 \cdot {{10}^{ - 10}}}}\)

\({(x - 0.006)^2} = 1.0567\)

\(\begin{array}{*{20}{c}}{x - 0.006 = 1.028}\\{x = 1.034{\rm{M}}}\end{array}\)

Therefore, the minimum concentration of\(N{H_3}\)is \(1.034M\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free