Question: A roll of \(35 - mm\) black and white photographic film contains about \(0.27g\) of unexposed \(AgBr\) before developing. What mass of \(N{a_2}{S_2}{O_3} \cdot 5{H_2}O\) (sodium thiosulfate penta hydrate or hypo) in \(1.0L\)of developer is required to dissolve the \(AgBr\)as \(Ag\left( {{S_2}{O_3}} \right)_2^{3 - }\left( {{K_f} = 4.7 \times 1{0^{13}}} \right)?\)

Short Answer

Expert verified

The mass of \({\rm{N}}{{\rm{a}}_2}{{\rm{S}}_2}{{\rm{O}}_3} \cdot 5{{\rm{H}}_2}{\rm{O}}\) (sodium thiosulfate penta hydrate or hypo) in \(1.0L\)of developer is required to dissolve the \(AgBr\)as \({\rm{Ag}}\left( {{{\rm{S}}_2}{{\rm{O}}_3}} \right)_2^{3 - }\left( {{K_{\rm{f}}} = 4.7 \times {{10}^{13}}} \right)\)is\(0.787g\).

Step by step solution

01

Define the dissociation constant formula:

The product of the reactant concentration divided by the product concentration yields the dissociation constant.

\({K_d} = \)Product of concentration of reactants\( \div \)concentration of products

02

Calculate the maximum possible concentration of\(A{g^ + }\):

Consider the mass of\({\rm{AgBr\;is\;}}0.27{\rm{g}}\)and the volume is\(1L\) .

Hence, the number of moles of\(AgBr\)is,

\({n_{AgBr}} = \frac{{0.27{\rm{g}}}}{{187.77{\rm{g}}/{\rm{mol}}}} = 1.438 \cdot {10^{ - 3}}{\rm{mol}}\)

Let the reaction of dissolution of\(AgBr\)be,

Thus,

\({K_{sp}} = 5 \cdot {10^{ - 13}}\)

Since,\(1.438 \cdot {10^{ - 3}}{\rm{mol\;of\;AgBr}}\)will dissolve into\(1.438 \cdot {10^{ - 3}}{\rm{mol\;of\;A}}{{\rm{g}}^ + }\)and\(1.438 \cdot {10^{ - 3}}{\rm{mol\;of\;B}}{{\rm{r}}^ - }\)

Therefore, the concentration of\({\rm{A}}{{\rm{g}}^ + }{\rm{and\;B}}{{\rm{r}}^ - }{\rm{are\; }}1.438 \cdot {10^{ - 3}}{\rm{M}}\)

Determine the maximum possible concentration of\(A{g^ + }\),

\({K_{sp}} = \left( {A{g^ + }} \right) \cdot \left( {B{r^ - }} \right]\)

\(\left( {A{g^ + }} \right) = \frac{{{K_{sp}}}}{{\left( {B{r^ - }} \right)}}\)

\(\begin{array}{*{20}{c}}{ = \frac{{5 \cdot {{10}^{ - 13}}}}{{1.438 \cdot {{10}^{ - 3}}}}}\\{ = 3.48 \cdot {{10}^{ - 10}}}\end{array}\)

03

Find the mass of\(N{a_2}{S_2}{O_3} \cdot 5{H_2}O\)by using the formula:

Consider, the reaction of formation of\({\rm{Ag}}\left( {{{\rm{S}}_2}{{\rm{O}}_3}} \right)_2^{3 - }\),

Thus, the dissociation constant is,

\({K_f} = 4.7 \cdot {10^{13}}\)

Find the concentration of\(\left( {{{\rm{S}}_2}{\rm{O}}_3^{2 - }} \right]\),

Solve the value of\(x,\)

\({K_f} = \frac{{\left( {Ag{{\left( {{S_2}{O_3}} \right)}_2}^{3 - }} \right)}}{{\left( {A{g^ + }} \right) \cdot {{\left( {{S_2}O_3^{2 - }} \right)}^2}}}\)

\(4.7 \cdot {10^{13}} = \frac{{1.438 \cdot {{10}^{ - 3}}}}{{3.48 \cdot {{10}^{ - 10}} \cdot {{\left( {x - 2.876 \cdot {{10}^{ - 3}}} \right)}^2}}}\)

\({\left( {x - 2.876 \cdot {{10}^{ - 3}}} \right)^2} = \frac{{1.438 \cdot {{10}^{ - 3}}}}{{3.48 \cdot {{10}^{ - 10}} \cdot 4.7 \cdot {{10}^{13}}}}\)

\(\begin{array}{*{20}{c}}{x - 2.876 \cdot {{10}^{ - 3}} = \sqrt {8.79 \cdot {{10}^{ - 8}}} }\\{ = 2.965 \cdot {{10}^{ - 4}}}\\{x = 3.17 \cdot {{10}^{ - 3}}{\rm{M}}}\end{array}\)

Hence, the number of moles of\({\rm{N}}{{\rm{a}}_2}{{\rm{S}}_2}{{\rm{O}}_3} \cdot 5{{\rm{H}}_2}{\rm{O}}\)is\(3.17 \cdot {10^{ - 3}}\).

Calculate the mass of\({\rm{N}}{{\rm{a}}_2}{{\rm{S}}_2}{{\rm{O}}_3} \cdot 5{{\rm{H}}_2}{\rm{O}}\),

\(\begin{array}{*{20}{c}}{m = 3.17 \cdot {{10}^{ - 3}}{\rm{mol}} \cdot 248.126{\rm{g}}/{\rm{mol}}}\\{ = 0.787{\rm{g}}}\end{array}\)

Therefore, the mass of \({\rm{N}}{{\rm{a}}_2}{{\rm{S}}_2}{{\rm{O}}_3} \cdot 5{{\rm{H}}_2}{\rm{O}}\)required is\(0.787g\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The Handbook of Chemistry and Physics (http://openstaxcollege.org/l/16Handbook) gives solubilities of the following compounds in grams per 100 mL of water. Because these compounds are only slightly soluble, assume that the volume does not change on dissolution and calculate the solubility product for each.

\(\begin{array}{l}(a)BaSe{O_4},0.0118\;g/100\;mL\\(b)Ba{\left( {Br{O_3}} \right)_2} \times {H_2}O,0.30\;g/100\;mL\\(c)N{H_4}MgAs{O_4} \times 6{H_2}O,0.038\;g/100\;mL\\(d)L{a_2}{\left( {Mo{O_4}} \right)_3},0.00179\;g/100\;mL\end{array}\)

Question: Calculate the cadmium ion concentration, \(\left( {C{d^{2 + }}} \right)\)in a solution prepared by mixing 0.100 L of 0.0100 M \(Cd{\left( {N{O_3}} \right)_2}\)with 1.150 L of 0.100 \(N{H_3}(aq)\).

A solution is 0.010 M in both Cu2+and Cd2+. What percentage ofCd2+remains in the solution when 99.9% of the Cu2+ has been precipitated as CuS by adding sulfide?

Question: We have seen an introductory definition of an acid: An acid is a compound that reacts with water and increases the amount of hydronium ion present. In the chapter on acids and bases, we saw two more definitions of acids: a compound that donates a proton (a hydrogen ion, \({H^ + }\)) to another compound is called a Brønsted-Lowry acid, and a Lewis acid is any species that can accept a pair of electrons. Explain why the introductory definition is a macroscopic definition, while the Brønsted-Lowry definition and the Lewis definition are microscopic definitions.

Calculate the molar solubility of \({\bf{Ba}}{{\bf{F}}_{\bf{2}}}\) in a buffer solution containing\({\bf{0}}.{\bf{20}}{\rm{ }}{\bf{M}}{\rm{ }}{\bf{HF}}{\rm{ }}{\bf{and}}{\rm{ }}{\bf{0}}.{\bf{20}}{\rm{ }}{\bf{M}}{\rm{ }}{\bf{NaF}}\) .

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free