Question: What are the concentrations of Ag+, CN, and Ag (CN)2 in a saturated solution of AgCN?

Short Answer

Expert verified

The concentrations of Ag+, CN, and Ag (CN)2 in a saturated solution of AgCN are

\(\begin{array}{*{20}{c}}{\left( {A{g^ + }} \right) = 3.795 \cdot {{10}^{ - 6}}{\rm{M}}}\\{\left( {Ag{{(CN)}_2}^ - } \right) = 3.795 \cdot {{10}^{ - 6}}{\rm{M}}}\\{\left( {C{N^ - }} \right) = 3.162 \cdot {{10}^{ - 11}}{\rm{M}}}\end{array}\)

Step by step solution

01

Determine Kf to calculate the saturated solution of AgCN:

The solubility of AgCN

\({K_{sp}} = \left( {A{g^ + }} \right) \cdot \left( {C{N^ - }} \right) = 1.2 \cdot {10^{ - 16}}\)

The reaction of formation of\({\left( {{\rm{Ag}}{{({\rm{CN}})}_2}} \right)^ - }\)

\({K_f} = \frac{{\left( {{\rm{Ag}}({\rm{CN}})_2^ - } \right)}}{{\left( {{\rm{A}}{{\rm{g}}^ + }} \right).{{\left( {C{{\rm{N}}^ - }} \right)}^2}}} = 1 \cdot {10^{21}}\)

Let us calculate the concentrations of Ag+, CN, and Ag(CN)2 in a saturated solution of AgCN.

\(\begin{array}{*{20}{c}}{{K_{sp}} = \left( {A{g^ + }} \right) \cdot \left( {C{N^ - }} \right)}\\{\left( {C{N^ - }} \right) = \frac{{{K_{sp}}}}{{\left( {A{g^ + }} \right)}}}\\{{K_f} = \frac{{\left( {Ag(CN)_2^ - } \right)}}{{\left( {A{g^ + }} \right) \cdot {{\left( {C{N^ - }} \right)}^2}}}}\\{{K_f} = \frac{{\left( {Ag(CN)_2^ - } \right)}}{{\left( {A{g^ + }} \right) \cdot \frac{{K_{sp}^2}}{{{{\left( {A{g^ + }} \right)}^2}}}}}}\\{{K_f} = \frac{{\left( {Ag(CN)_2^ - } \right) \cdot \left( {A{g^ + }} \right)}}{{K_{sp}^2}}}\end{array}\)

02

Calculate the concentration of Ag+, CN–, and Ag (CN)2− :

  • 2 moles of AgCN will dissociate into 2 moles of Ag+ and 2 moles of CN-
  • 2 moles of CN-will react with 1 mole of Ag+, to produce one mole ofAg (CN)2and we will have one mole of Ag+left
  • Therefore, we\(\left( {A{g^ + }} \right) = \left( {Ag(CN)_2^ - } \right)\)

    \(\begin{array}{*{20}{c}}{{K_f} = \frac{{\left( {A{g^ + }} \right) \cdot \left( {A{g^ + }} \right)}}{{K_{sp}^2}}}\\{{{\left( {A{g^ + }} \right)}^2} = {K_f} \cdot K_{sp}^2}\\{ = 1 \cdot {{10}^{21}} \cdot {{\left( {1.2 \cdot {{10}^{ - 16}}} \right)}^2}}\\{\left( {A{g^ + }} \right) = 3.795 \cdot {{10}^{ - 6}}{\rm{M}}}\\{\left( {Ag(CN)_2^ - } \right) = 3.795 \cdot {{10}^{ - 6}}{\rm{M}}}\end{array}\)

    And the concentration of CN- is

    \(\begin{array}{*{20}{c}}{\left( {C{N^ - }} \right) = \frac{{{K_{sp}}}}{{\left( {A{g^ + }} \right)}}}\\{ = \frac{{1.2 \cdot {{10}^{ - 16}}}}{{3.795 \cdot {{10}^{ - 6}}}}}\\{ = 3.162 \cdot {{10}^{ - 11}}{\rm{M}}}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: What reagent might be used to separate the ions in each of the following mixtures, which are 0.1 M with respect to each ion? In some cases, it may be necessary to control the \(pH\).(Hint: Consider the \({K_{sp}}\)values given in

(a) \(H{g_2}^{2 + }\;and\;C{u^{2 + }}\)

(b) \(S{O_4}^{2 - }\;and\;C{l^ - }\)

(c) \(H{g^{2 + }}\;and\;C{o^{2 + }}\)

(d) \(Z{n^{2 + }}\;and\;S{r^{2 + }}\)

(e) \(B{a^{2 + }}\;and\;M{g^{2 + }}\)

(f) \(CO_3^{2 - }\;and\;O{H^ - }\)

Question: 30. Which of the following compounds precipitates from a solution that has the concentrations indicated? (See Appendix J for \({K_{sp}}\) values.)

(a) \(KCl{O_4}:\left( {{K^ + }} \right) = 0.01{M^ - }\left( {ClO_4^ - } \right) = 0.01M\)

(b) \({K_2}PtC{l_6}:\left( {{K^ + }} \right) = 0.01M,\left( {PtC{l_6}^{2 - }} \right) = 0.01M\) \(\)

(c) \(Pb{I_2}:\left( {P{b^{2 + }}} \right) = 0.003M,\left( {{I^ - }} \right) = 1.3 \times 1{0^{ - 3}}M\)

(d) \(A{g_2}\;S:\left( {A{g^ + }} \right) = 1 \times 1{0^{ - 10}}M,\left( {{S^{2 - }}} \right) = 1 \times 1{0^{ - 13}}M\)

Assuming that no equilibria other than dissolution are involved, calculate the concentrations of ions in a saturated solution of each of the following (see Appendix J for solubility products).

(a) TlCl

(b) \(Ba{F_2}\)

(c) \(A{g_2}Cr{O_4}\)

(d) \(Ca{C_2}{O_4} \times {H_2}O\)

(e) The mineral anglesite, \(PbS{O_4}\)

Question: How many grams of \(Zn{(CN)_2}(s)(117.44g/mol)\)would be soluble in 100 mL of\({H_2}O\)? Include the balanced reaction and the expression for \({K_{sp}}\)in your answer. The \({K_{sp}}\)value for\(Zn{(CN)_2}(s)\;is\;3.0 \times 1{0^{ - 16}}\).

A solution of \({\bf{0}}.{\bf{075}}{\rm{ }}{\bf{M}}{\rm{ }}{\bf{CoB}}{{\bf{r}}_{\bf{2}}}\) is saturated with\({{\bf{H}}_{\bf{2}}}{\bf{S}}{\rm{ }}\left( {\left[ {{{\bf{H}}_{\bf{2}}}{\bf{S}}} \right]{\rm{ }} = {\rm{ }}{\bf{0}}.{\bf{10}}{\rm{ }}{\bf{M}}} \right)\). What is the minimum pH at which CoS begins to precipitate?

\(\begin{array}{*{20}{c}}{CoS(s) \rightleftharpoons C{o^{2 + }}(aq) + {S^{2 - }}(aq)\quad \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{K_{sp}} = 4.5 \times 1{0^{ - 27}}} \\ {{H_2}S(aq) + 2{H_2}O(l) \rightleftharpoons 2{H_3}{O^ + }(aq) + {S^{2 - }}(aq)\quad \;\;\;\;\;\;\;\;\;K = 1.0 \times 1{0^{ - 26}}} \end{array}\;\;\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free