Question:Calculate the equilibrium concentration of Zn2+ in a solution initially with 0.150 M Zn2+and 2.50 M CN-.

Short Answer

Expert verified

The equilibrium concentration of Cu2+is\(5.48 \cdot {10^{ - 22}}{\rm{M}}\).

Step by step solution

01

Find the dissociation constant Kd:

Let us calculate the equilibrium concentration of Zn2+in a solution initially with 0.150 M Zn2+and 2.50 M NH3.CN-.

The reaction of formation of\({\left( {{\rm{Zn}}{{({\rm{CN}})}_4}} \right)^{2 - }}\)

  • The formulation constant of\({\left( {{\rm{Zn}}{{({\rm{CN}})}_4}} \right)^{2 - }}{\rm{\;is\;}}{K_f} = 2.1 \cdot {10^{19}}\)

Since Zn2+ is a limiting reagent, 0.150 M Zn2+will react with\((0.150{\rm{M}} \cdot 4)\)\(0.6{\rm{MC}}{{\rm{N}}^ - }\), to produce 0.150 M\({\left( {{\rm{Zn}}{{({\rm{CN}})}_4}} \right)^{2 - }}\)

Therefore, we will be left with

\(\begin{array}{*{20}{c}}{\left( {Z{n^{2 + }}} \right) = 0{\rm{M}}}\\{({\rm{CN}}\mid = 2.50{\rm{M}} - 0.6{\rm{M}} = 1.9{\rm{M}}}\\{\left( {{{\left( {{\rm{Zn}}{{({\rm{CN}})}_4}} \right)}^{2 - }}} \right) = 0.150{\rm{M}}}\end{array}\)

The reaction ofdissociation of\({\left( {{\rm{Zn}}{{({\rm{CN}})}_4}} \right)^{2 - }}\)

The dissociation constant of\({\left( {{\rm{Zn}}{{({\rm{CN}})}_4}} \right)^{2 - }}{\rm{\;is\;}}{K_d} = \frac{1}{{{K_f}}} = \frac{1}{{2.1 \cdot {{10}^{19}}}} = 4.76 \cdot {10^{ - 20}}\)

02

Calculate the equilibrium concentration of Cu2+:

\(\begin{array}{*{20}{c}}{{K_d} = \frac{{\left( {Z{n^{2 + }}} \right) \cdot {{\left( {C{N^ - }} \right)}^4}}}{{\left( {{{\left( {Zn{{(CN)}_4}} \right)}^{2 - }}} \right)}}}\\{4.76 \cdot {{10}^{ - 20}} = \frac{{x \cdot {{(1.9 + 4x)}^4}}}{{0.150 - x}}}\end{array}\)

Since K_d is smaller than 10-4,

We will assume that\(0.150 - {\rm{x}} \approx 0.150\)

And that\(1.9 + 4{\rm{x}} \approx 1.9\)

\(\begin{array}{*{20}{c}}{4.76 \cdot {{10}^{ - 20}} = \frac{{x \cdot {{(1.9)}^4}}}{{0.150}}}\\{x = 5.48 \cdot {{10}^{ - 22}}{\rm{M}}}\\{\left( {Z{n^{2 + }}} \right) = 5.48 \cdot {{10}^{ - 22}}{\rm{M}}}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free