Calculate the ionization constant for each of the following acids or bases from the ionization constant of its conjugate base or conjugate acid:

  1. \({F^ - }\)
  2. \(NH_4^ + \)
  3. \(AsO_4^{3 - }\)
  4. \({\left( {C{H_3}} \right)_2}NH_2^ + \)
  5. \(N{O_2}\)
  6. \(H{C_2}O_4^ - \) (asabase)

Short Answer

Expert verified
  1. \({F^ - }\) is a base, therefore \({K_b} = 2.9 \times {10^{ - 11}}\)
  2. \(NH_4^ + \)is an acid, therefore \({K_a} = 5.6 \times {10^{ - 10}}\)
  3. \(AsO_4^{3 - }\)is a base, therefore \({K_b} = 2.0 \times {10^{ - 3}}\)
  4. \({\left( {{\rm{C}}{{\rm{H}}_3}} \right)_2}{\rm{NH}}_2^ + \)is an acid, therefore \({K_a} = 1.7 \times {10^{ - 11}}\)
  5. \(N{O_2}\) is a base, therefore \({K_b} = 1.8 \times {10^{ - 11}}\)
  6. \({\rm{H}}{{\rm{C}}_2}{\rm{O}}_4^ - \) is a base, therefore \({K_b} = 1.7 \times {10^{ - 13}}\)

Step by step solution

01

Acids and bases

Acids are something that releases \({H^ + }\) ion in the solution and bases are something that accepts \({H^ + }\) ion from the solution.

Strong acids have weak conjugate bases and vice-versa.

Strong bases have weak conjugate acids and vice-versa.

If \({K_a}\) is given and \({K_b}\) is to found, then the formula that can be used is,

\(^n{K_w} = {K_a} \cdot {K_b}\)

Here, \({K_a}\)is the acid ionization constant and \({K_b}\) is the base ionization constantof the acid's conjugate base.

Also, \({K_w}\) is the ionic water product,a constant.

\({{\rm{K}}_{\rm{w}}} = {10^{ - 14}}{M^2}\)

02

Subpart (a)

The conjugate acidfor \({F^ - }\) is \({\bf{HF}}\).

As, the \({K_a}\)value for \({\bf{HF}}\) is \(3.5 \times {10^{ - 4}}\).

Therefore,

\(\begin{aligned}{K_b} &= \frac{{{K_w}}}{{{K_a}}}\\{K_b} &= \frac{{{{10}^{ - 14}}}}{{3.5 \cdot {{10}^{ - 4}}}}\\{K_b} &= 2.9 \cdot {10^{ - 11}}\end{aligned}\)

03

Subpart (b)

The conjugate baseof \(NH_4^ + \) is \(N{H_3}\).

The \({K_b}\) value for \(N{H_3}\) is \(1.8 \times {10^{ - 5}}\).

Therefore,

\(\begin{aligned}{K_a} &= \frac{{{K_w}}}{{{K_b}}}\\{K_a} &= \frac{{{{10}^{ - 14}}}}{{1.8 \cdot {{10}^{ - 5}}}}\\{K_a} &= 5.6 \cdot {10^{ - 10}}\end{aligned}\)

Hence, the \({K_a}\)value for \({\rm{NH}}_4^ + \) is \(5.6 \times {10^{ - 10}}\).

04

Subpart (c)

The conjugate acidof \(AsO_4^{3 - }\) is \(HAsO_4^{2 - }\).

The \({{\rm{K}}_a}\)value for \(HAsO_4^{2 - }\) is \(5.1 \times {10^{ - 12}}\).

\(\begin{aligned}{K_b} &= \frac{{{K_w}}}{{{K_a}}}\\{K_b} &= \frac{{{{10}^{ - 14}}}}{{5.1 \cdot {{10}^{ - 12}}}}\\{K_b} &= 2.0 \cdot {10^{ - 3}}\end{aligned}\)

Hence, the \({K_b}\) value for \(AsO_4^{3 - }\) is \(2.0 \times {10^{ - 3}}\).

05

Subpart (d)

The conjugate basefor \({\left( {{\rm{C}}{{\rm{H}}_3}} \right)_2}{\rm{NH}}_2^ + \) is \({\left( {{\rm{C}}{{\rm{H}}_3}} \right)_2}{\rm{NH}}\).

The \({{\rm{K}}_b}\)value for \({\left( {{\rm{C}}{{\rm{H}}_3}} \right)_2}{\rm{NH}}\)equals \(5.9 \times {10^{ - 4}}.\)

\(\begin{aligned}{K_a} &= \frac{{{K_w}}}{{{K_b}}}\\{K_a} &= \frac{{{{10}^{ - 14}}}}{{5.9 \cdot {{10}^{ - 4}}}}\\{K_a} &= 1.7 \cdot {10^{ - 11}}\end{aligned}\)

The \({K_a}\)value for \({\left( {{\rm{C}}{{\rm{H}}_3}} \right)_2}{\rm{NH}}_2^ + \) equals \(1.7 \times {10^{ - 11}}\).

06

Subpart (e)

The conjugate acidfor \(N{O_2}\) is \(HN{O_2}\).

The \({K_a}\) value for \(HN{O_2}\) equals \(5.6 \times {10^{ - 4}}.\)

\(\begin{aligned}{K_a} &= \frac{{{K_w}}}{{{K_b}}}\\{K_a} &= \frac{{{{10}^{ - 14}}}}{{5.6 \times {{10}^{ - 4}}}}\\{K_a} &= 1.8 \times {10^{ - 11}}\end{aligned}\)

The \({K_b}\)value for \(N{O_2}\) equals \(1.8 \times {10^{ - 11}}\).

07

Subpart (f)

The conjugate acidfor \(H{C_2}O_4^ - \) is \({H_2}{C_2}{O_4}\).

The \({K_a}\) value for \({H_2}{C_2}{O_4}\) equals \(6.0 \times {10^{ - 2}}\).

\(\begin{aligned}{K_b} &= \frac{{{K_w}}}{{{K_a}}}\\{K_b} &= \frac{{{{10}^{ - 14}}}}{{6.0 \cdot {{10}^{ - 2}}}}\\{K_b} &= 1.7 \cdot {10^{ - 13}}\end{aligned}\)

Therefore, the \({K_b}\)value for \({\rm{H}}{{\rm{C}}_2}{\rm{O}}_4^ - \) is \(1.7 \times {10^{ - 13}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free