In order to calculate the change in entropy, we use the formula
\(\Delta S = S({\rm{ products }}) - S({\rm{ reactants }})\)
Since all the reactions occur under standard conditions, we can look up the standard entropy values for each species in the table in Appendix \(G\)in the book.
a)
\(\Delta S = S(Mn,s) + S\left( {{O_2},g} \right) - S\left( {Mn{O_2},s} \right)\)
\(\Delta S = (32.0 + 205.2 - 53.05)\frac{J}{{K \cdot mol}}\)
\(\Delta S = 184.2\frac{J}{{K \cdot mol}}\)
b)
\(\Delta S = 2S(HBr,g) - S\left( {{H_2},g} \right) - S\left( {B{r_2},l} \right)\)
\(\Delta S = (2 \cdot 198.7 - 130.7 - 152.23)\frac{J}{{K \cdot mol}}\)
\(\Delta S = 114.5\frac{J}{{K \cdot mol}}\)
(c)
\(\Delta S = S({\rm{CuS}},{\rm{s}}) - S({\rm{Cu}},{\rm{s}}) - S(\;{\rm{S}},g)\)
\(\Delta S = (66.5 - 33.15 - 167.82)\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\)
\(\Delta S = - 134.5\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\)
(d)
\(\Delta S = S\left( {{\rm{L}}{{\rm{i}}_2}{\rm{C}}{{\rm{O}}_3},\;{\rm{s}}} \right) + S\left( {{{\rm{H}}_2}{\rm{O}},{\rm{g}}} \right) - 2\;{\rm{S}}({\rm{LiOH}},{\rm{s}}) - S\left( {{\rm{C}}{{\rm{O}}_2},g} \right)\)\(\Delta S = S\left( {{\rm{L}}{{\rm{i}}_2}{\rm{C}}{{\rm{O}}_3},\;{\rm{s}}} \right) + S\left( {{{\rm{H}}_2}{\rm{O}},{\rm{g}}} \right) - 2\;{\rm{S}}({\rm{LiOH}},{\rm{s}}) - S\left( {{\rm{C}}{{\rm{O}}_2},g} \right)\)
\(\Delta S = (90.17 + 188.8 - 2 \cdot 42.8 - 213.8)\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\)
\(\Delta S = - 20.4\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\)
(e)
\(\Delta S = S(C\), graphite \() + 2S\left( {{H_2}{\rm{O}},g} \right) - S\left( {{\rm{C}}{{\rm{H}}_4},g} \right) - S\left( {{{\rm{O}}_2},g} \right)\)
\(\Delta S = (5.740 + 2 \cdot 188.8 - 186.3 - 205.2)\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\)
\(\Delta S = - 8.2\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\)
(f)
\(\Delta S = S(C{\rm{Cl}},g) + S\left( {{S_2}{\rm{C}}{{\rm{l}}_2},g} \right) - S\left( {{\rm{C}}{{\rm{S}}_2},g} \right) - 3S\left( {{\rm{C}}{{\rm{l}}_2},g} \right)\)
\(\Delta S = (309.7 + 319.45 - 238.0 - 3 \cdot 223.1)\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\)
\(\Delta S = - 278.2\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\)
Hence the change in entropy are given as \(184.2\frac{J}{{K \cdot mol}}\),\(114.5\frac{J}{{K \cdot mol}}\),\( - 134.5\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\),\( - 20.4\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\),\( - 8.2\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\)and\( - 278.2\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}\).