Question: The pH of normal urine is 6.30, and the total phosphate concentration \(\left( {\left( {PO_4^{3 - }} \right) + \left( {HPO_4^{2 - }} \right) + \left( {{H_2}PO_4^ - } \right)} \right.\)\(\left. { + \left( {{H_3}P{O_4}} \right)} \right)\)is 0.020 M. What is the minimum concentration of \(C{a^{2 + }}\) necessary to induce kidney stone formation? (See Exercise 15.49 for additional information.)

Short Answer

Expert verified

The minimum concentration of \({\rm{C}}{{\rm{a}}^{2 + }}\)that will trigger formation of kidney stones is \(1.73 \cdot {10^{ - 5}}{\rm{M}}\).

Step by step solution

01

Express the concentration of \(\left( {HPO_4^{2 - }} \right)\) :

Let’s consider, \(\left( {{{\rm{H}}^ + }} \right)\) in the urine to be able to predict dissociation of other ions.

\(\begin{array}{*{20}{c}}{{\rm{pH}} = - \log \left( {{{\rm{H}}^ + }} \right)}\\{6.3 = - \log \left( {{{\rm{H}}^ + }} \right)}\\{\log \left( {{{\rm{H}}^ + }} \right) = - 6.3}\end{array}\)

\(\begin{array}{*{20}{c}}{\left( {{{\rm{H}}^ + }} \right) = {\rm{antilog\;}}( - 6.3)}\\{\left( {{{\rm{H}}^ + }} \right) = 5.01 \cdot {{10}^{ - 7}}}\end{array}\)

Dissociation of Phosphate,

\({{\rm{K}}_3} = \frac{{\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right)\left( {{\rm{PO}}_4^{3 - }} \right)}}{{\left( {{\rm{HPO}}_4^{2 - }} \right)}}\)

\(\begin{array}{*{20}{c}}{3.6 \cdot {{10}^{ - 13}} = \frac{{5.01 \cdot {{10}^{ - 7}}\left( {{\rm{PO}}_4^{3 - }} \right)}}{{\left( {{\rm{HPO}}_4^{2 - }} \right)}}}\\{\left( {{\rm{HPO}}_4^{2 - }} \right) = \frac{{5.01 \cdot {{10}^{ - 7}}}}{{3.6 \cdot {{10}^{ - 13}}}}\left( {{\rm{PO}}_4^{3 - }} \right)}\end{array}\)

\(\left( {{\rm{HPO}}_4^{2 - }} \right) = 1.39 \cdot {10^6}\left( {{\rm{PO}}_4^{3 - }} \right)\)

So, the concentration is expressed as \(\left( {{\rm{PO}}_4^{3 - }} \right){\rm{\;is\;}}1.39 \cdot {10^6}\left( {{\rm{PO}}_4^{3 - }} \right)\).

02

Express the concentration of \(\left( {{H_2}PO_4^ - } \right)\):

\({{\rm{K}}_2} = \frac{{\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right)\left( {{\rm{HPO}}_4^{2 - }} \right)}}{{\left( {{{\rm{H}}_2}{\rm{PO}}_4^ - } \right)}}\)

Substitute \(\left( {{\rm{PO}}_4^{3 - }} \right){\rm{\;is\;}}1.39 \cdot {10^6}\left( {{\rm{PO}}_4^{3 - }} \right)\)as we get in before step,

\(\begin{array}{*{20}{c}}{6.2 \cdot {{100}^8} = \frac{{5.01 \cdot {{10}^{ - 7}} \cdot 1.39 \cdot {{10}^6}\left( {{\rm{PO}}_1^{i - }} \right)}}{{\left( {{\rm{I}}{{\rm{I}}_2}{\rm{PO}}_4^ - } \right)}}}\\{\left| {{{\rm{H}}_2}{\rm{PO}}_4^ - } \right| = \frac{{0.696}}{{6.2 \cdot {{10}^{ - 8}}}}\left( {{\rm{P}}_4^{3 - }} \right)}\end{array}\)

\(\left( {{{\rm{H}}_2}{\rm{PO}}_4^ - } \right) = 1.12 \cdot {10^7}\left( {{\rm{PO}}_4^{3 - }} \right)\)

So, the concentration is expressed as \(\left( {{\rm{PO}}_4^{3 - }} \right){\rm{\;is\;}}1.12 \cdot {10^7}\left( {{\rm{PO}}_4^{3 - }} \right)\)

03

Express the concentration of \(\left( {{H_3}P{O_4}} \right)\):

\({{\rm{K}}_1} = \frac{{\left( {{{\rm{H}}_3}{{\rm{O}}^ + }} \right)\left( {{{\rm{H}}_2}{\rm{PO}}_4^ - } \right)}}{{\left( {{{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4}} \right)}}\)

Substitute\(\left( {{\rm{PO}}_4^{3 - }} \right){\rm{\;is\;}}1.12 \cdot {10^7}\left( {{\rm{PO}}_4^{3 - }} \right)\) as we get in before step,

\(\begin{array}{*{20}{c}}{7.5 \cdot {{10}^{ - 3}} = \frac{{5.01 \cdot {{10}^{ - 7}} \cdot 1.12 \cdot {{10}^7}\left( {{\rm{PO}}_4^{3 - }} \right)}}{{\left( {{{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4}} \right)}}}\\{\left( {{{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4}} \right) = \frac{{5.611}}{{7.5 \cdot {{10}^{ - 3}}}}\left( {{\rm{PO}}_4^{3 - }} \right)}\end{array}\)

\(\left( {{{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4}} \right) = 748\left( {{\rm{PO}}_4^{3 - }} \right)\)

So, the concentration is expressed as \(\left( {{\rm{PO}}_4^{3 - }} \right){\rm{\;is\;}}748\left( {{\rm{PO}}_4^{3 - }} \right)\)

04

Find The minimum concentration of \(C{a^{2 + }}\)that will trigger formation of kidney stones:

Phosphate concentration in urine is \(0.02{\rm{M}}\)

\(0.02 = \left( {{{\rm{H}}_3}{\rm{P}}{{\rm{O}}_4}} \right) + \left( {{{\rm{H}}_2}{\rm{PO}}_4^ - } \right) + \left( {{\rm{HPO}}_4^{2 - }} \right) + \left( {{\rm{PO}}_4^{3 - }} \right)\)

\(\begin{array}{*{20}{c}}{0.02 = 748 \setminus \left( {{\rm{PO}}_4^{3 - }} \right) + 1.12 \cdot {{10}^7}\left( {{\rm{PO}}_4^{3 - }} \right) + 1.39 \cdot {{10}^6}\left( {{\rm{PO}}_4^{3 - }} \right)}\\{0.02 = \left( {748 + 1.12 \cdot {{10}^7} + 1.39 \cdot {{10}^6}} \right)\left( {{\rm{PO}}_4^{3 - }} \right)}\end{array}\)

\(\begin{array}{*{20}{c}}{\left( {{\rm{PO}}_4^{3 - }} \right) = \frac{{0.02}}{{1.26 \cdot {{10}^7}}}}\\{\left( {{\rm{PO}}_4^{3 - }} \right) = 1.59 \cdot {{10}^{ - 9}}}\end{array}\)

As given \({{\rm{K}}_{sp}} = 1.3 \cdot {10^{ - 32}}\),

\(\begin{array}{*{20}{c}}{{{\left( {{\rm{C}}{{\rm{a}}^{2 + }}} \right)}^3} = \frac{{1.3 \cdot {{10}^{ - 32}}}}{{{{\left( {1.59 \cdot {{10}^{ - 9}}} \right)}^2}}}}\\{{{\left( {{\rm{C}}{{\rm{a}}^{2 + }}} \right)}^3} = 5.14 \cdot {{10}^{ - 15}}}\end{array}\)

\(\begin{array}{*{20}{c}}{\left( {{\rm{C}}{{\rm{a}}^{2 + }}} \right) = \sqrt(3){{5.14 \cdot {{10}^{ - 15}}}}}\\{\left( {{\rm{C}}{{\rm{a}}^{2 + }}} \right) = 1.73 \cdot {{10}^{ - 5}}{\rm{M}}}\end{array}\)

The minimum concentration of \({\rm{C}}{{\rm{a}}^{2 + }}\)that will trigger formation of kidney stones is \(1.73 \cdot {10^{ - 5}}{\rm{M}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A 500-mL bottle of water at room temperature and a 2-L bottle of water at the same temperature were placed in a refrigerator. After 30 minutes, the 500-mL bottle of water had cooled to the temperature of the refrigerator. An hour later, the 2-L of water had cooled to the same temperature. When asked which sample of water lost the most heat, one student replied that both bottles lost the same amount of heat because they started at the same temperature and finished at the same temperature. A second student thought that the 2-L bottle of water lost more heat because there was more water. A third student believed that the 500-mL bottle of water lost more heat because it cooled more quickly. A fourth student thought that it was not possible to tell because we do not know the initial temperature and the final temperature of the water. Indicate which of these answers is correct and describe the error in each of the other answers.

Question: Calculate these masses

a) What is the mass of 6.00 cm3 of mercury, density = 13.5939 g/cm3?

b) What is the mass of 25.0 mL octane, density = 0.702 g/cm3?

(a) Add 2.334 ml. and 0.31 ml.

(b) Subtract 55.8752 m from 56.533 m.

Both graphite and diamond burn.

\({\bf{C}}\left( {{\bf{s, diamond}}} \right){\bf{ + }}{{\bf{O}}_{\bf{2}}}\left( {\bf{g}} \right) \to {\bf{C}}{{\bf{O}}_{\bf{2}}}\left( {\bf{g}} \right)\)

For the conversion of graphite to diamond:

\({\bf{C}}\left( {{\bf{s, graphite}}} \right) \to {\bf{C}}\left( {{\bf{s, diamond}}} \right){\bf{ \Delta {\rm H}}}_{{\bf{298}}}^{\bf{^\circ }}{\bf{ = 1}}{\bf{.90 kJ}}\)

Which produces more heat, the combustion of graphite or the combustion of a diamond?

Indicate the SI base units or derived units that are appropriate for the following measurements:

  1. The length of a marathon race (26 miles 385 yards)
  2. The mass of an automobile
  3. The volume of a swimming pool
  4. The speed of an airplane
  5. The density of gold
  6. The area of a football field
  7. The maximum temperature at the South Pole on April 1, 1913
See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free