Show that the complete chemical equation, the total ionic equation, and the net ionic equation for the reaction represented by the equation \({\rm{KI}}(aq) + {{\rm{I}}_2}(aq) \rightleftharpoons {\rm{K}}{{\rm{I}}_3}(aq)\) give the same expression for the reaction quotient. \({\rm{K}}{{\rm{I}}_3}\)is composed of the ions \({{\rm{K}}^ + }\) and \({{\rm{I}}_3}^ - .\)

Short Answer

Expert verified

The complete chemical equation, the total ionic equation, and the net ionic equation for the reaction is composed of the ions \({K^ + }\) and \({I_3}^ - \) as\(\frac{{\left[ {K{I_3}} \right]}}{{[KI] \cdot \left[ {{I_2}} \right]}} = \frac{{\left[ {{K^ + }} \right] \cdot \left[ {I_3^ - } \right]}}{{\left[ {{K^ + }} \right] \cdot \left[ {{I^ - }} \right] \cdot \left[ {{I_2}} \right]}} = \frac{{\left[ {I_3^ - } \right]}}{{\left[ {{I^ - }} \right] \cdot \left[ {{I_2}} \right]}}\)

Step by step solution

01

Total ionic equation versus the net ionic equation

A net ionic equation depicts simply the chemical species participating in a reaction, but a complete ionic equation includes spectator ions as well.

02

Expression for the chemical equations

The reaction \({\rm{KI}}({\rm{aq}}) + {{\rm{I}}_2}({\rm{aq}}) \rightleftharpoons {\rm{K}}{{\rm{I}}_3}({\rm{aq}})\)

  • \({\rm{K}}{{\rm{l}}_3}\)is composed of the ions\({{\rm{K}}^ + }\)and\({\rm{I}}_3^ - \)

Let us show that the reaction quotients for the total ionic equation, the net ionic equation, and the full chemical equation all have the same expression.

  • The complete chemical equation \({\rm{KI}}({\rm{aq}}) + {{\rm{I}}_2}({\rm{aq}})\rightleftharpoons{\rm{K}}{{\rm{I}}_3}({\rm{aq}})\)

The reaction quotient

\(\begin{array}{}{Q_c} = \frac{{\left[ {K{I_3}} \right]}}{{[KI] \cdot \left[ {{I_2}} \right]}}\\ = \frac{{\left[ {{K^ + }} \right] \cdot \left[ {I_3^ - } \right]}}{{\left[ {{K^ + }} \right] \cdot \left[ {{I^ - }} \right] \cdot \left[ {{I_2}} \right]}}\\ = \frac{{\left[ {I_3^ - } \right]}}{{\left[ {{I^ - }} \right] \cdot \left[ {{I_2}} \right]}}\end{array}\)

  • The total ionic equation \({{\rm{K}}^ + }({\rm{aq}}) + {{\rm{I}}^ - }({\rm{aq}}) + {{\rm{I}}_2}({\rm{aq}})\rightleftharpoons {{\rm{K}}^ + }({\rm{aq}}) + {\rm{I}}_3^ - ({\rm{aq}})\)

The reaction quotient

\(\begin{array}{c}{Q_c} = \frac{{\left[ {{K^ + }} \right] \cdot \left[ {I_3^ - } \right]}}{{\left[ {{K^ + }} \right] \cdot \left[ {{I^ - }} \right] \cdot \left[ {{I_2}} \right]}}\\ = \frac{{\left[ {I_3^ - } \right]}}{{\left[ {{I^ - }} \right] \cdot \left[ {{I_2}} \right]}}\end{array}\)

  • The net ionic equation \({{\rm{I}}^ - }({\rm{aq}}) + {{\rm{I}}_2}({\rm{aq}})\rightleftharpoons {\rm{I}}_3^ - ({\rm{aq}})\)

The reaction quotient

\({Q_c} = \frac{{\left[ {I_3^ - } \right]}}{{\left[ {{I^ - }} \right] \cdot \left[ {{I_2}} \right]}}\)

Therefore,

\(\begin{array}{c}{Q_c} = \frac{{\left[ {K{I_3}} \right]}}{{[KI] \cdot \left[ {{I_2}} \right]}}\\ = \frac{{\left[ {{K^ + }} \right] \cdot \left[ {I_3^ - } \right]}}{{\left[ {{K^ + }} \right] \cdot \left[ {{I^ - }} \right] \cdot \left[ {{I_2}} \right]}}\\ = \frac{{\left[ {I_3^ - } \right]}}{{\left[ {{I^ - }} \right] \cdot \left[ {{I_2}} \right]}}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A student solved the following problem and found the equilibrium concentrations to be \(\left[ {S{O_2}} \right] = 0.590M\), \(\left[ {{O_2}} \right] = 0.0450M\), and \(\left[ {S{O_3}} \right] = 0.260M\). How could this student check the work without reworking the problem? The problem was: For the following reaction at \(60{0^0}C\):

\(2S{O_2}(g) + {O_2}(g) \rightleftharpoons 2S{O_3}(g)\)

\({K_c} = 4.32\)

What are the equilibrium concentrations of all species in a mixture that was prepared with \(\left[ {S{O_3}} \right] = 0.500M\), \(\left[ {S{O_2}} \right] = 0M\)and \(\left[ {{O_2}} \right] = 0.350M\)?

What is the pressure of \(C{O_2}\)in a mixture at equilibrium that contains \(0.50atm\)\({H_2}\), \(2.0atm\)of \({H_2}O\), and \(1.0atm\)of \(CO\) at \(99{0^0}C\)?

\({H_2}(g) + C{O_2}(g) \rightleftharpoons {H_2}O(g) + CO(g)\)

\({K_P} = 1.6\,at\, 99{0^o}C\)

At a temperature of 60 ̊C, the vapor pressure of water is 0.196atm. What is the value of the equilibrium constant Kp for the transformation at 60 ̊C? H2O (l)⇌ H2O(g)

Which of the systems described in Exercise 13.15 give homogeneous equilibria? Which give heterogeneous equilibria?

(a) \(C{H_4}(g) + C{l_2}\rightleftharpoons C{H_3}CI(g) + HCI(g)\)

(b)\({N_2}(g) + {O_2}(g)\rightleftharpoons 2NO(g)\)

(c)\(2S{O_2}(\;g) + {O_2}(\;g)\rightleftharpoons 2S{O_3}(\;g)\)

(d)\(BaS{O_3}(s)\rightleftharpoons BaO(s) + S{O_2}(g)\)

(e) \({P_4}(g) + 5{O_2}(g)\rightleftharpoons{P_4}{O_{10}}(s)\)

(f)\(B{r_2}(\;g)\rightleftharpoons 2Br(g)\)

(g) \(C{H_4}(g) + 2{O_2}(g)\rightleftharpoons C{O_2}(g) + 2{H_2}O(l)\)

(h) \(CuS{O_4} \times 5{H_2}O(s)\rightleftharpoons CuS{O_4}(s) + 5{H_2}O(g)\)

Write the mathematical expression for the reaction quotient, \({Q_c}\), for each of the following reactions:

(a) \({N_2}(g) + 3{H_2}(g) \rightleftharpoons 2N{H_3}(g)\)

(b) \(4N{H_3}(g) + 5{O_2}(g) \rightleftharpoons 4NO(g) + 6{H_2}O(g)\)

(c) \({N_2}{O_4}(g) \rightleftharpoons 2N{O_2}(g)\)

(d) \(C{O_2}(g) + {H_2}(g) \rightleftharpoons CO(g) + {H_2}O(g)\)

(e) \(N{H_4}Cl(s) \rightleftharpoons N{H_3}(g) + HCl(g)\)

(f) \(2\;Pb{\left( {N{O_3}} \right)_2}(s) \rightleftharpoons 2PbO(s) + 4N{O_2}(g) + {O_2}(g)\)

(g) \(2{H_2}(g) + {O_2}(g) \rightleftharpoons 2{H_2}O(l)\)

(h) \({S_8}(g) \rightleftharpoons 8\;S(g)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free