Question: Antimony pentachloride decomposes according to this equation:

An equilibrium mixture in a 5.00-L flask at 4480C contains 3.85 g of \({\rm{SbC}}{{\rm{l}}_5}\),9.14 g of \({\rm{SbC}}{{\rm{l}}_3}\)and 2.84 g of \({\rm{C}}{{\rm{l}}_2}\).How many grams of each will be found if the mixture is transferred into a 2.00-L flask at the same temperature?

Short Answer

Expert verified

The mass of\({\rm{SbC}}{{\rm{l}}_5}\)would be 6.23g

The mass of \({m_{SbCl}}\)would be 7.34g

The mass of \({m_{Cl}}\)would be 2.28g

Step by step solution

01

Find initial concentration.

Given information:

-The volume of a flask is 5.00L

At equilibrium

The mass of\({\rm{SbC}}{{\rm{l}}_5}\)is 3.85g \(\left( {\frac{{3.85{\rm{g}}}}{{299,02{\rm{g}}/{\rm{mol}}}} = 1.29 \times {{10}^{ - 2}}{\rm{mol}}} \right)\)

\(\left( {\left( {SbC{l_5}} \right) = \frac{{1.29 \times {{10}^{ - 2}}{\rm{mol}}}}{{5.00{\rm{L}}}} = 2.58 \times {{10}^{ - 3}}{\rm{M}}} \right)\)

-the mass of \({\rm{SbC}}{{\rm{l}}_3}\)is 9.14g\(\left( {\frac{{9.14{\rm{g}}}}{{228,13{\rm{g}}/{\rm{mol}}}} = 4.01 \times {{10}^{ - 2}}{\rm{mol}}} \right)\)

\(\left( {\left( {SbC{l_3}} \right) = \frac{{4.01 \times {{10}^{ - 2}}{\rm{mol}}}}{{5.00{\rm{L}}}} = 8.02 \times {{10}^{ - 3}}{\rm{M}}} \right)\)

-the mass of \({\rm{C}}{{\rm{l}}_2}\)is 2.84g\(\left( {\frac{{2.84}}{{70.91{\rm{g}}/{\rm{mol}}}} = 4.01 \times {{10}^{ - 2}}{\rm{mol}}} \right)\)

\(\left( {\left( {C{l_2}} \right) = \frac{{4.01 \times {{10}^{ - 2}}{\rm{mol}}}}{{5.00{\rm{L}}}} = 8.02 \times {{10}^{ - 3}}{\rm{M}}} \right)\)

- The equilibrium constant for this equation is

\({K_c} = \frac{{\left( {SbC{l_3}} \right) \times \left( {C{l_2}} \right]}}{{\left( {SbC{l_5}} \right)}} = \frac{{8.02 \times {{10}^{ - 3}} \times 8.02 \times {{10}^{ - 3}}}}{{2.58 \times {{10}^{ - 3}}}} = 0.0249\)

We have to find the mass of each gas will be found if the mixture is transferred into a 2.00 L flask. (The temperature remains the same)

- The initial concentrations, under new conditions are

\(\begin{array}{*{20}{c}}{\left( {{\rm{SbC}}{{\rm{l}}_5}} \right) = \frac{{1.29 \times {{10}^{ - 2}}{\rm{mol}}}}{{2.00{\rm{L}}}} = 6.45 \times {{10}^{ - 3}}{\rm{M}}}\\{\left( {{\rm{SbC}}{{\rm{l}}_3}} \right) = \frac{{4.01 \times {{10}^{ - 2}}{\rm{mol}}}}{{2.00{\rm{L}}}} = 2.005 \times {{10}^{ - 2}}{\rm{M}}}\\{\left( {{\rm{C}}{{\rm{l}}_2}} \right) = \frac{{4.01 \times {{10}^{ - 2}}{\rm{mol}}}}{{2.00{\rm{L}}}} = 2.005 \times {{10}^{ - 2}}{\rm{M}}}\end{array}\)

02

Find X value.

Since volume is decreased, the pressure will increase, hence the equilibrium will move to the left (because of the fewer number of gas molecules).

Now we will find the value of x

\({K_c} = \frac{{\left( {{\rm{SbC}}{{\rm{l}}_3}} \right) \times \left( {{\rm{C}}{{\rm{l}}_2}} \right)}}{{\left. {{{({\rm{SbCl}})}_5}} \right)}}\)

\(0.0249 = \frac{{\left( {2.005 \times {{10}^{ - 2}} - x} \right) \times \left( {2.005 \times {{10}^{ - 2}} - x} \right)}}{{6.45 \times {{10}^{ - 3}} + x}}\)

\(\begin{array}{*{20}{c}}{0.0249 \times \left( {6.45 \times {{10}^{ - 3}} + x} \right) = {{\left( {2.005 \times {{10}^{ - 2}} - x} \right)}^2}}\\{0.16 \times {{10}^{ - 3}} + 0.0249x = 4.02 \times {{10}^{ - 4}} - 4.01 \times {{10}^{ - 2}}x + {x^2}}\\{0 = {x^2} - 0.065x + 2.42 \times {{10}^{ - 4}}}\\{x = 3.965 \times {{10}^{ - 3}}{\rm{M}}}\end{array}\)

03

Find mass of gas.

The new equilibrium concentrations are [\({\rm{SbC}}{{\rm{l}}_5}\)] =\(6.45 \times {10^{ - 3}} + x = 10.415 \times {10^{ - 3}}{\rm{M}}\)

[\({\rm{SbC}}{{\rm{l}}_3}\)]\( = 2.005 \times {10^{ - 2}} - x = 16.085 \times {10^{ - 3}}{\rm{M}}\)

[\({\rm{C}}{{\rm{l}}_2}\)]\( = 2.005 \times {10^{ - 2}} - x = 16.085 \times {10^{ - 3}}{\rm{M}}\)

Therefore, the mass of each gas that would be found if the mixture is transferred into a 2.00 L flask is

\({\rm{SbC}}{{\rm{l}}_5}\)\( = 10.415 \times {10^{ - 3}}{\rm{M}} \times 2L \times 299,02{\rm{g}}/{\rm{mol}} = 6.23{\rm{g}}\)

\({m_{SbCl}}\)\( = 16.085 \times {10^{ - 3}}M \times 2L \times 228,13{\rm{g}}/{\rm{mol}} = \)7.34g

\({m_{Cl}}\)\( = 16.085 \times {10^{ - 3}}M \times 2L \times 70.91{\rm{g}}/{\rm{mol}} = 2.28{\rm{g}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A sample of ammonium chloride was heated in a closed container. NH4 Cl (s)⇌ NH3 (g) + HCl(g)at equilibrium, the pressure of NH3 (g)was found to be 1.75 atm. What is the value of the equilibrium constant, Kp, for the decomposition at this temperature?

Complete the changes in concentrations (or pressure, if requested) for each of the following reactions.

Question: Consider the reaction between \({{\rm{H}}_2}\)and \({{\rm{O}}_2}\)at 100 K\({K_P} = \frac{{{{\left( {{P_{{{\rm{H}}_2}{\rm{O}}}}} \right)}^2}}}{{\left( {{P_{{{\rm{O}}_2}}}} \right){{\left( {{P_{{{\rm{H}}_2}}}} \right)}^2}}} = 1.33 \times {10^{20}}\)

If 0.500 atm of H2 and 0.500 atm of O2are allowed to come to equilibrium at this temperature, what are the partial pressures of the components?

Convert the values of Kc to values of Kp or the values of Kp to values of Kc .

\((a)\,{N_2}\left( g \right) + 3{H_2}\left( g \right)\rightleftharpoons 2N{H_3}(g)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{K_C} = 0.50\,\,at\,\,400^\circ C\)

\((b){{\rm{H}}_2}(g) + {{\rm{I}}_2}(g)\rightleftharpoons 2HI(g)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{K_c} = 50.2\,at\,{448^\circ }{\rm{C}}\)

\((c)N{a_2}{\rm{S}}{{\rm{O}}_4} \cdot 10{{\rm{H}}_2}O(s)\rightleftharpoons N{a_2}{\rm{S}}{{\rm{O}}_4}(s) + 10{{\rm{H}}_2}O(g){K_P} = 4.08 \times {10^{ - 25}}at\,{25^\circ }{\rm{C}}\)

\((d){{\rm{H}}_2}{\rm{O}}(l)\rightleftharpoons {{\rm{H}}_2}{\rm{O}}(g)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{K_P} = 0.122\,at\,{50^\circ }{\rm{C}}\)

Calcium chloride 6−hydrate, \(CaC{l_2}.6{H_2}O\), dehydrates according to the equation

\(CaC{l_2} \times 6{H_2}O(s) \rightleftharpoons CaC{l_2}(s) + 6{H_2}O(g)\)

\({K_P} = 5.09 \times 1{0^{ - 44}}at2{5^o}C\)

What is the pressure of water vapor at equilibrium with a mixture of \(CaC{l_2}.6{H_2}O\)and \(CaC{l_2}\)?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free