Question: Consider the reaction between \({{\rm{H}}_2}\)and \({{\rm{O}}_2}\)at 100 K\({K_P} = \frac{{{{\left( {{P_{{{\rm{H}}_2}{\rm{O}}}}} \right)}^2}}}{{\left( {{P_{{{\rm{O}}_2}}}} \right){{\left( {{P_{{{\rm{H}}_2}}}} \right)}^2}}} = 1.33 \times {10^{20}}\)

If 0.500 atm of H2 and 0.500 atm of O2are allowed to come to equilibrium at this temperature, what are the partial pressures of the components?

Short Answer

Expert verified

The partial pressure of \({{\rm{H}}_2}\)\({\rm{\;is\;}}8.67 \times {10^{ - 11}}{\rm{M}}\)

The partial pressure of \({{\rm{O}}_2}\)\({\rm{\;is\;}}0.250{\rm{M}}\)

The partial pressure of \({{\rm{H}}_2}{\rm{O\;is\;}}0.500{\rm{M}}\)

Step by step solution

01

Write equilibrium table.

Given information is

-The equilibrium constant is \({K_p} = 1.33 \times {10^{20}}\)

-0.50 atm of \({{\rm{H}}_2}\) and 0.500 atm of \({{\rm{O}}_2}\) are allowed to come to equilibrium

We have to find the partial pressures of the components.

We will assume that all \({{\rm{H}}_2}\)reacts with \({{\rm{O}}_2}\).

Two moles of \({{\rm{H}}_2}\)reacts with 1 mole of \({{\rm{O}}_2}\), to produce 2 moles of \({{\rm{H}}_2}{\rm{O}}\), so after the reaction the partial pressure of \({{\rm{H}}_2}\)will be 0 atm (0.500 atm -0.500 atm) of \({{\rm{O}}_2}\) will be 0.250 atm(0.500 atm -0.250 atm, and \({{\rm{H}}_2}{\rm{O}}\) will be 0.500 atm.

Since all of \({{\rm{H}}_2}\) reacted and the partial pressure is 0 , the equilibrium will move to the left

02

Find the value of x.

\({K_p} = \frac{{{{\left( {{H_2}{\rm{O}}} \right)}^2}}}{{{{\left( {{H_2}} \right)}^2} \times \left( {{O_2}} \right)}}\)

\(1.33 \cdot {10^{20}} = \frac{{{{(0.500 - x)}^2}}}{{{{(2x)}^2} \times (0.250 + x)}}\)

Since \({{\rm{K}}_ - }p\) is larger than \({10^4}\)

we will assume that 0.500 \( - {\bf{X}} \approx \)0.500

and that 0.250\( + x \approx 0.250\)

\(1.33 \times {10^{20}} = \frac{{{{(0.500)}^2}}}{{{{(2x)}^2} \times (0.250)}}\)

\(4{x^2} = \frac{{0.230}}{{1.33 \times {{10}^{20}} \times 0.250}}\)

\({x^2} = 1.88 \times {10^{ - 21}}\)

\(x = 4.34 \times {10^{ - 11}}{\rm{M}}\)

Therefore, the partial pressures of the components, are

\(\begin{array}{*{20}{c}}{{P_{{H_2}}} = 2x = 8.67 \times {{10}^{ - 11}}{\rm{M}}}\\{{P_{{O_2}}} = 0.250 + x = 0.250{\rm{M}}}\\{{P_{{H_2}O}} = 0.500 - x = 0.500{\rm{M}}}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: \(\;A\;0.72 - mol\)sample of \(PC{l_5}\)is put into a \(1.00 - L\) vessel and heated. At equilibrium, the vessel contains \(0.40mol\) of \(PC{l_3}(g)\) and \(0.40mol\;of\;C{l_2}(g)\). Calculate the value of the equilibrium constant for the decomposition of \(PC{l_5}\;to\;\)\(PC{l_3}\;and\;C{l_2}\)at this temperature.

Nitrogen and oxygen react at high temperatures.

(a) Write the expression for the equilibrium constant \(\left( {{K_c}} \right)\)for the reversible reaction

\(\Delta H = 181kJ\)

(b) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\)at equilibrium if more \({O_2}\)is added?

(c) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\)at equilibrium if \({N_2}\)is removed?

(d) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\) at equilibrium if \(NO\)is added?

(e) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\)at equilibrium if the pressure on the system is increased by reducing the volume of the reaction vessel?

(f) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\) at equilibrium if the temperature of the system is increased?

(g) What will happen to the concentrations of \({N_2},{O_2}, and\;NO\) at equilibrium if a catalyst is added?

The initial concentrations or pressures of reactants and products are given for each of the following systems. Calculate the reaction quotient and determine the direction in which each system will proceed to reach equilibrium.

(a) \(\begin{aligned}{}2{\rm{N}}{{\rm{H}}_3}(\;{\rm{g}}) \rightleftharpoons {{\rm{N}}_2}(\;{\rm{g}}) + 3{{\rm{H}}_2}(\;{\rm{g}})\;\;\;{K_e} b= 17;\\\;\;\;\left( {{\rm{N}}{{\rm{H}}_3}} \right) = 0.50\,M,\;\left( {{{\rm{N}}_2}} \right) = 0.15\,M,\;\left( {{{\rm{H}}_2}} \right) = 0.12\,M\end{aligned}\)

(b) \(\begin{aligned}{}2{\rm{N}}{{\rm{H}}_3}(\;g) \rightleftharpoons {{\rm{N}}_2}(\;g) + 3{{\rm{H}}_2}(\;g)\;\;\;{K_P} = 6.8 \times {10^4};\\\;\;\;\;{\rm{initial}}\;{\rm{pressures:}}\,{\kern 1pt} {\rm{N}}{{\rm{H}}_3} = 2.00\;{\rm{atm}},\;{\kern 1pt} {\kern 1pt} {{\rm{N}}_2} = 10.00\,{\rm{atm}},\;{{\rm{H}}_2} = 10.00\,{\rm{atm}}\end{aligned}\)

(c) \(\begin{aligned}{}2{\rm{S}}{{\rm{O}}_3}(\;g) \rightleftharpoons 2{\rm{S}}{{\rm{O}}_2}(\;g) + {{\rm{O}}_2}(\;g)\;\;\;{K_c} = 0.230;\\\;{\kern 1pt} {\kern 1pt} {\kern 1pt} \;\left( {{\rm{S}}{{\rm{O}}_3}} \right) = 2.00\,M,\;\left( {{\rm{S}}{{\rm{O}}_2}} \right) = 2.00\,M,\;\left( {{{\rm{O}}_2}} \right) = 2.00\,M\end{aligned}\)

(d) \(\begin{aligned}{}2{\rm{S}}{{\rm{O}}_3}(\;g) \rightleftharpoons 2{\rm{S}}{{\rm{O}}_2}(\;g) + {{\rm{O}}_2}(\;g)\;\;\;{K_p} = 6.5\;{\rm{atm}};\\\;\;\;\;{\rm{initial}}\;{\rm{pressures:}}\;{\rm{S}}{{\rm{O}}_2} = 1.00\;{\rm{atm}},\;{{\rm{O}}_2} = 1.130\;{\rm{atm}},\;{\rm{S}}{{\rm{O}}_3} = 0\;{\rm{atm}}\end{aligned}\)

(e) \(\begin{aligned}{}2{\rm{NO}}(g) + {\rm{C}}{{\rm{l}}_2}(g) \rightleftharpoons 2{\rm{NOCl}}(g)\;\;\;{K_P} = 2.5 \times {10^3};\\\;\;\;\;{\rm{initial}}\;{\rm{pressures:}}\;{\rm{NO}} = 1.00\;{\rm{atm}},{\rm{C}}{{\rm{l}}_2} = 1.00\;{\rm{atm}},\;{\rm{NOCl}} = 0\;{\rm{atm}}\end{aligned}\)

(f) \(\begin{aligned}{}{{\rm{N}}_2}(\;g) + {{\rm{O}}_2}(\;g) \rightleftharpoons 2{\rm{NO}}(g)\;\;\;{K_c} = 0.050;\\\;\;\;\;\;\left( {{{\rm{N}}_2}} \right) = 0.100M,\;\left( {{{\rm{O}}_2}} \right) = 0.200M,\;({\rm{NO}}) = 1.00M\end{aligned}\)

The following reaction has \({K_P} = 4.50 \times {10^{ - 5}}\) at \(720\;{\rm{K}}\).

\({{\rm{N}}_2}(g) + 3{{\rm{H}}_2}(g) \rightleftharpoons 2{\rm{N}}{{\rm{H}}_3}(g)\)

If a reaction vessel is filled with each gas to the partial pressures listed, in which direction will it shift to reach equilibrium?

\(P\left( {{\rm{N}}{{\rm{H}}_3}} \right) = 93\;{\rm{atm}},\;P\left( {\;{{\rm{N}}_2}} \right) = 48\;{\rm{atm}},\;{\rm{and}}\;P\left( {{{\rm{H}}_2}} \right) = 52\)

Question: The density of trifluoroacetic acid vapor was determined at 118.1 °C and 468.5 torr, and found to be 2.784 g/L.

CalculateKcfor the association of the acid.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free