A 2.50 L volume of hydrogen measured at-1960C is warmed to1000C. Calculate the volume of the gas at the higher temperature, assuming no change in pressure.

Short Answer

Expert verified

The final volume of the gas at the higher temperature is \({{\rm{V}}_{\rm{2}}}{\rm{ = 12}}{\rm{.09\;L}}\).

Step by step solution

01

Definition of Charles’ law

As per Charles’ law, the volume of an ideal gas and absolute temperature are proportional to each other under constant pressure.

02

Explanation ofCharles’ law

The initial- and final-volume circumstances, as well as the final temperature of a carbon monoxide gas sample, are given.

The law of Charles: When the pressure and mass of gas remain constant, Charles’s law defines the connection between the volume and temperature.

The volume is proportional to the absolute temperature, according to this formula.

\(\begin{aligned}{}{\rm{V\mu T}}\\\frac{{\rm{V}}}{{\rm{T}}}{\rm{ = constant}}\\{\rm{ }}\frac{{{{\rm{V}}_{\rm{1}}}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ = constant ,}}\\\frac{{{{\rm{V}}_{\rm{2}}}}}{{{{\rm{T}}_{\rm{2}}}}}{\rm{ = constant }}\end{aligned}\).

So, \(\;\;\;\frac{{{{\rm{V}}_{\rm{1}}}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ = }}\frac{{{{\rm{V}}_{\rm{2}}}}}{{{{\rm{T}}_{\rm{2}}}}}\),

where,

\({{\rm{V}}_{\rm{1}}}{\rm{,}}{{\rm{V}}_{\rm{2}}}{\rm{ = }}\)the initial and final volumes, and

\({{\rm{T}}_{\rm{1}}}{\rm{,}}{{\rm{T}}_{\rm{2}}}{\rm{ = }}\)the initial and final absolute temperatures.

03

Calculating the volume of the gas at the final temperature

Considering that temperatures are measured in degrees celsiusrather than kelvins (absolute scale),

we must convert temperatures from degrees celsiusto kelvins.

We have\({{\rm{0}}^{\rm{^\circ }}}{\rm{ = (0) + 273}}{\rm{.15K}}\).

So,

\(\begin{aligned}{}{\rm{ - 19}}{{\rm{6}}^{\rm{^\circ }}}{\rm{ = ( - 196) + 273}}{\rm{.15K}}\\{\rm{ = 77}}{\rm{.15K}}\end{aligned}\)

\(\begin{aligned}{}{\rm{10}}{{\rm{0}}^{\rm{^\circ }}}{\rm{ = (100) + 273}}{\rm{.15K}}\\{\rm{ = 373}}{\rm{.15K}}\end{aligned}\).

Initial volume \(\left( {{{\rm{V}}_{\rm{1}}}} \right){\rm{ = 2}}{\rm{.5\;L}}{\rm{.}}\;\;\;\)

Final volume \(\left( {{{\rm{V}}_{\rm{2}}}} \right){\rm{ = L}}{\rm{.}}\)?

Initial temperature \(\left( {{{\rm{T}}_{\rm{1}}}} \right){\rm{ = 77}}{\rm{.15\;K}}{\rm{.}}\;\;\;\)

Final temperature \(\left( {{{\rm{T}}_{\rm{2}}}} \right){\rm{ = 373}}{\rm{.15\;K}}{\rm{.}}\)

\(\begin{aligned}{}\frac{{{{\rm{V}}_{\rm{1}}}}}{{{{\rm{T}}_{\rm{1}}}}}{\rm{ = }}\frac{{{{\rm{V}}_{\rm{2}}}}}{{{{\rm{T}}_{\rm{2}}}}}\\{{\rm{T}}_{\rm{1}}}{\rm{ = }}\frac{{{{\rm{V}}_{\rm{1}}}{\rm{ \times }}{{\rm{T}}_{\rm{2}}}}}{{{{\rm{V}}_{\rm{2}}}}}\end{aligned}\).

The final volume is

\(\begin{aligned}{}{{\rm{V}}_{\rm{2}}}{\rm{ = }}\frac{{{\rm{(2}}{\rm{.5\;L) \times (373}}{\rm{.15\;K)}}}}{{{\rm{77}}{\rm{.15\;K}}}}\\{\rm{ = }}\frac{{{\rm{(2}}{\rm{.5) \times (373}}{\rm{.15)}}}}{{{\rm{77}}{\rm{.15}}}}{\rm{L}}{\rm{.}}\\{\rm{ = }}\frac{{{\rm{(932}}{\rm{.875)}}}}{{{\rm{77}}{\rm{.15}}}}{\rm{\;L}}{\rm{.}}\\{\rm{ = 12}}{\rm{.09\;L}}{\rm{.}}\end{aligned}\)

Therefore, the final volume of the gas at the higher temperature is \({{\rm{V}}_{\rm{2}}}{\rm{ = 12}}{\rm{.09\;L}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free