Iodine, I2, is a solid at room temperature but sublimes (converts from a solid into a gas) when warmed. What is the temperature in a 73.3mL bulb that contains 0.292 g of I2,vapour at a pressure of 0.462 atm?

Short Answer

Expert verified

The temperature is \({\rm{(T) = 375}}{\rm{.55\;K}}\).

Step by step solution

01

Explanation of the ideal gas law

The pressure, volume, temperature, and the number of moles of a gas are all related by the ideal gas law.

It is given as

\({\rm{PV = nRT}}\).

\(\begin{aligned}{}{\rm{P = pressure of the gas}}{\rm{. }}\\{\rm{V = volume of the gas}}{\rm{.}}\\{\rm{ n = number of moles of the gas}}{\rm{.}}\\{\rm{ T = temperature of the gas}}{\rm{. }}\end{aligned}\)

\(\begin{aligned}{}{\rm{R = Ideal gas constant }}\\{\rm{ = 0}}{\rm{.08206\;L atm mo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}\end{aligned}\).

The amount of the gas \({\rm{(n)}}\)is in moles, temperature \({\rm{(T)}}\) is in Kelvin \(\left( {\rm{K}} \right){\rm{,}}\) and pressure \({\rm{(P)}}\)is in atm.

02

Finding the number of moles of gas

\(\begin{aligned}{}{\rm{Pressure (P) = 0}}{\rm{.462\;atm}}{\rm{.}}\\{\rm{Volume (V) = 73}}{\rm{.3\;mL}}{\rm{. }}\\{\rm{Temperature (T) = ?}}\\{\rm{K amount of gas (n) = 0}}{\rm{.292 moles}}{\rm{. }}\\{\rm{Ideal gas constant (R) = 0}}{\rm{.08206\;L atm mo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{n}}\end{aligned}\)

However, the given volume is in \({\rm{mL}}\)but not in \({\rm{L}}\).

So, we have to convert the volume in\({\rm{mL}}\)to\({\rm{L}}\).

We have\({\rm{1mL = 0}}{\rm{.001L}}\).

So,

\(\begin{aligned}{}{\rm{73}}{\rm{.3\;mL = (73}}{\rm{.3) \times (0}}{\rm{.001)L}}\\{\rm{ = 0}}{\rm{.0733\;L}}\end{aligned}\).

Converting \({\rm{0}}{\rm{.292}}\)grams of \({{\rm{I}}_{\rm{2}}}\)gas to the no. of moles of \({{\rm{I}}_{\rm{2}}}\) gas:

The atomic weight of iodine \((I) = 126.9\)grams.

So, the molecular weight of \({{\rm{I}}_{\rm{2}}}{\rm{ = (2) \times (126}}{\rm{.9)}}\) grams.

\({\rm{I = 253}}{\rm{.8}}\)grams.

So,\({\rm{253}}{\rm{.8}}\)grams of \({I_{\rm{2}}}{\rm{ = 1}}\)mole of\({{\rm{I}}_{\rm{2}}}\).

So, the no. of moles of gas of \({{\rm{I}}_{\rm{2}}}{\rm{(n) = }}\left( {{\rm{0}}{\rm{.292}}} \right.\) grams of \(\left. {{{\rm{I}}_{\rm{2}}}} \right){\rm{ \times }}\left( {\frac{{{\rm{1 mole }}}}{{{\rm{253}}{\rm{.8 grams of }}{{\rm{I}}_{\rm{2}}}}}} \right)\)

\({\rm{ = 0}}{\rm{.0011}}\)moles of \({{\rm{I}}_{\rm{2}}}\).

03

Evaluating the temperature

\({\rm{PV = nRT}}\).

\(\begin{aligned}{}{\rm{ Temperature (T) = }}\frac{{{\rm{PV}}}}{{{\rm{nR}}}}\\{\rm{ = }}\frac{{{\rm{(0}}{\rm{.462) \times (0}}{\rm{.0733)}}}}{{{\rm{(0}}{\rm{.0011) \times (0}}{\rm{.08206)}}}}\\{\rm{ = }}\frac{{{\rm{0}}{\rm{.0338}}}}{{{\rm{0}}{\rm{.00009}}}}\\{\rm{ = 375}}{\rm{.55\;K}}{\rm{.}}\end{aligned}\)

Hence, the temperature is\({\rm{(T) = 375}}{\rm{.55\;K}}{\rm{.}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free